Thème I. Ondes et signaux (Ondes) Ondes stationnaires et battements

Vendredi 27 juin 2025

Battements

Compétences exigibles du programme :

- ✓ Déterminer une différence de fréquences à partir d'enregistrements de battements ou d'observation sensorielle directe.
- ✓ Réaliser l'analyse spectrale d'un signal périodique à l'aide d'un oscilloscope numérique.

Matériel :

- -2 diapasons,
- 1 smartphone avec l'application PhyPhox préalablement téléchargée https://phyphox.org/download/

Expérience : Observation des battements

- 🖙 Vous disposez de deux diapasons, sur l'un une petite masselotte peut être placée (ce qui modifie légèrement sa fréquence de vibration).
- 🖙 Frapper les deux diapasons, dont l'un est désaccordé, simultanément.
- Écouter. Que percevez-vous?
- Q1. Noter vos observations.
- 🖙 Réaliser l'acquisition temporelle du signal avec phyphox.
- Q2. Recopier l'allure du signal obtenu.

La période des battements est liée à l'écart de fréquence entre les deux fréquences entre les deux signaux qui se superposent par : $T_{\text{batt}} = \frac{1}{|f_2 - f_1|}$

Q3. Mesurer la période des battements, et en déduire l'écart de fréquence.

- 🖙 Réaliser le spectre de Fourier (FFT) avec l'application. Noter les fréquences présentes dans le spectre.
- Q4. Reproduire le spectre.
- Q5. Noter les deux fréquences présentes dans le spectre. Comparer leur écart avec celui obtenu $Q3^*$.

Ш Corde de Melde

Compétences exigibles du programme :

✓ Décrire une onde stationnaire observée par stroboscopie sur la corde de Melde.

Matériel : 1 vibreur, 1 GBF, 1 corde, 1 mètre, 2 potences, 1 boîte de masselottes, 1 balance.

||.1|Dispositif de la corde de Melde

- Les modes propres d'une corde fixée à ses deux extrémités peuvent être mis en évidence en utilisant le phénomène de résonance : on excite une corde à l'une de ses deux extrémités avec un vibreur dont on peut régler la fréquence. Lorsque la fréquence du vibreur est égale à la fréquence d'un des modes propres, il y a résonance, c'est-à-dire l'amplitude de vibration de la corde devient importante.
- Pour cela on utilise le dispositif de la corde de Melde :
 - une des extrémités (x = L) est reliée à une masse au travers d'une poulie;
 - l'autre extrémité (x = 0) est excitée par un vibreur alimenté par un GBF. Le vibreur impose un mouvement vertical sinusoïdal d'amplitude de l'ordre de quelques mm et de fréquence f réglable via le GBF.

- Les ondes le long de la corde sont de célérité $c = \sqrt{\frac{T}{\mu}}$, avec :
 - T = mg, la tension de la corde, où m est la masse accrochée, et g = 9,81 m · s⁻² (supposé sans incertitude);
 - μ , la masse linéique de la corde,
- Les modes résonnants de la corde de Melde sont de fréquences égales aux fréquences propres de la corde données par : $f_n = n \frac{c}{2L}$, avec $n \in \mathbb{N}^*$.

II.2 Observations

Expérience

- ${\ensuremath{\mathbb S}}$ Faire varier la fréquence du GBF.
- Q6. Noter vos observations.
- Q7. Faire des schéma de vos observations.
- Q8. Si vous avez le temps, comparer les fréquences de résonance mesurées expérimentalement avec les valeurs attendues.

II.3 Observations au stroboscope

Expérience : utilisation d'un stroboscope

Le stroboscope est une source lumineuse émettant périodiquement, tous les T_{strobo} , des flashs de lumière blanche. Lorsque l'on observe la corde sous les flashs du stroboscope, on voit les points de la corde aux instants : $t_i = t_0 + iT_{\text{strobo}}$.

Q9. Qu'observez-vous quand vous faites varier la fréquence du stroboscope par rapport à la fréquence propre.

- Si $T_{\rm strobo}$ est égale à la période du mode propre observé alors chaque point de la corde semble immobile : la corde paraît fixe.
- Si T_{strobo} est égale à un multiple de la période du mode propre observé alors chaque point de la corde semble immobile : la corde paraît fixe. Cependant nous ne verrons pas chaque aller-retour de la corde.
- Si T_{strobo} est égale à un sous-multiple de la période du mode propre observé alors nous verrons la corde à plusieurs endroits (par ex. « en haut » et « en bas » si $T_{\text{strobo}} = T/2$).
- Si T_{strobo} est légèrement différente à T_n alors chaque point de la corde aura un peu bougé entre deux éclairs : on visualise alors un mouvement ralenti.

III Son émis par une corde vibrante

Compétences exigibles du programme :

- ✓ Mettre en œuvre un dispositif expérimental permettant d'analyser le spectre du signal acoustique produit par une corde vibrante.
- $\checkmark\,$ Réaliser l'analyse spectrale d'un signal périodique.
- Matériel :
 - 1 ukulélé,
 - 1 smartphone avec l'application PhyPhox préalablement téléchargée https://phyphox.org/download/

Observations temporelles 111.1

Expérience : Signal temporel

- 🖙 Acquérir l'onde acoustique émise par une corde du ukulélé.

- Acquérir l'onde acoustique émise par une corde du ule
 Observer le signal obtenu.
 Q10. Reproduire l'allure du signal obtenu. Commenter.
 Sélectionner « Détail d'une mesure » (Figure 3) : v points de mesure, et en tirant entre deux points (Figure 3) : v ordonnée).
 Q11. Déterminer la fréquence du son émis par le ukulélé. 🖙 Sélectionner « Détail d'une mesure » (Figure 3) : vous pouvez avoir les coordonnées des différents points de mesure, et en tirant entre deux points (Figure 3), la différence qui les sépare (en temps et en

III.2 Observations spectrales

Expérience : Spectre

- 🖙 Obtenir le spectre du signal.
- Q12. Reproduire le spectre du signal.
- Q13. Mesurer les fréquences et les amplitudes des différents harmoniques.
- **≩**Q14. Commenter.

III.3 Où sont les frettes?

Expérience : Position des frettes

Q15. Écrire un lele. R Mettre en c Q16. Conclure. Q15. Écrire un protocole permettant de justifier la position des frettes du uku-

Mettre en œuvre le protocole.

- Un octave (par exemple entre deux Do successifs) correspond à un doublement de fréquence.
- Chaque octave est divisé en 12 demi-tons.
- La fréquence est multipliée par un facteur constant entre chaque demi-ton.

ANNEXE : Application phyphox

Acquisitions temporelles A

- Choisir « Mesure du son » (Figure 1).
- Choisir une durée d'affichage du son mesuré (Figure 2).
- Lancer l'acquisition (bouton lecture), puis l'arrêter (bouton pause) (Figure 2).
- Cliquer sur le signal obtenu et zoomer si besoin dessus.
- Des curseurs sont disponibles et accessibles depuis le bouton « détail d'une mesure » (Figure 3).

Physique – TP n°25 Page 4 / 4

1	phyphox physical phone experiments
Ŕ	Luminosité Données brutes du capteur de lumière.
Ð	Magnétomètre Données brutes du magnétomètre.
Q	Pression Données brutes du baromètre.
Acoustique	
\checkmark	Autocorrélation Audio Mesurer la fréquence d'une note unique.
0	Effet Doppler Détecte les petits décalages de fréquence dus à l'effet D
$\mathbf{I}(\mathbf{x}))\Big)$	Générateur de son Crée un son à une fréquence précise
	Historique des fréquences Mesure la variation de la fréquence en fonction du temp
	Intensité sonore Mesure l'intensité d'un son.
ŧ	Mesure du son Affiche les données audio enregistrées.
	Sonar Mesure une distance en utilisant l'écho.
	Spectre Audio Affiche le spectre fréquentiel d'un signal audio.

Figure 1

B Spectres

FIGURE 2

FIGURE 3

FIGURE 4

Figure 5

Figure 6

- Choisir « Spectre Audio » (Figure 1).
- Dans « Paramètres » (Figure 4), choisir pour le nombre d'échantillons : 32768.
- Lancer l'acquisition (bouton lecture), puis l'arrêter (bouton pause).
- Cliquer sur le spectre.
- Dans « Autres outils » , décocher « Échelle logarithmique pour l'axe y » .
- « Détail d'une mesure » (Figure 6) vous permet d'obtenir les curseurs et d'effectuer les mesures.