

? À rendre le jeudi 2 octobre 2025

Devoir Maison n°3 : Électrocinétique

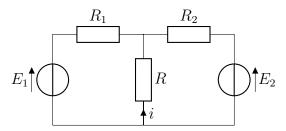
- Comment chercher un D.M.?

- Commencer à chercher le DM, dès le soir de la distribution de l'énoncé.
- Suivre la fiche « Boîte à outils DM& DS », et notamment la check-liste de la présentation/rédaction.
- Avec le chapitre et les exercices ouverts sous les yeux.
- Chercher en groupe.
- En cas de blocage, poser des questions, à la fin d'un cours ou par mail : nvalade.pcsi@gmail.com
- La réponse à un problème de physique doit contenir :
 - des schémas grands, clairs et complets;
 - des **phrases** qui expliquent votre raisonnement;
 - les calculs **littéraux**, avec uniquement les **grandeurs littérales** définies par l'énoncé (ou par vousmême si elles ne le sont pas par l'énoncé);
 - les applications numériques avec un nombre adapté de chiffres significatifs et une unité.

Après avoir récupéré votre copie et le corrigé :

- Reprendre votre copie avec le corrigé afin de comprendre vos erreurs, lire les conseils donnés, . . .
- Refaire le DM (si besoin) avant le DS suivant.

Exercice n°1 Étude d'une ampoule



On étudie une ampoule assimilée à un conducteur ohmique $R=6,0~\Omega$, sur laquelle sont branchés deux piles assimilées à des générateurs de Thévenin de forces électromotrices $E_1=4,0~\mathrm{V}$ et $E_2=12~\mathrm{V}$. Les résistances interne ont les valeurs $R_1=1,0~\Omega$ et $R_2=6,0~\Omega$.

- Q1. Recopier le circuit et y ajouter les deux intensités manquantes, et les trois tensions manquantes*.
- Q2. Combien y a-t-il de grandeurs électriques inconnues †? Combien d'équations indépendantes sont nécessaires pour résoudre ce problème?
- Q3. Écrire ces équations indépendantes les reliant.
- Q4. Résoudre ce système d'équations pour exprimer i en fonction de R_1 , R_2 , R, E_1 , E_2 . Faire l'application numérique.

^{*.} ce sont des choix arbitraires, il n'y a pas de bons ou de mauvais choix pour les placer.

^{†.} indice : c'est un nombre pair et multiple de 3!

^{‡.} Indications (c'est une méthode de résolution possible, il en existe une infinité d'autres!) :

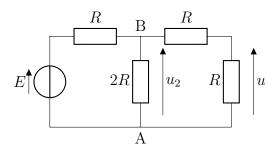
[—] injecter les lois d'Ohm dans les lois des mailles, pour ensuite isoler i_1 et i_2 de ces deux relations.

[—] injecter dans la loi des nœuds et conclure.

Exercice n°2 Résistances en cascade

Vous traiterez au choix l'un des deux exercices ci-dessous.

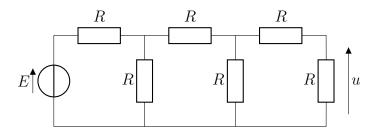
Exercice n°2.1 Niveau



On étudie le circuit ci-contre.

- Q1. Peut-on appliquer directement la relation du pont diviseur de tension pour exprimer u_2 en fonction de E? Pourquoi?
- Q2. Exprimer (sans calcul) la relation entre u et u_2 .
- Q3. Exprimer la résistance équivalente R_{AB} entre A et B. Reproduire le circuit ainsi simplifié (avec E, R et R_{AB} uniquement).
- Q4. En déduire u_2 en fonction de E.
- Q5. En déduire l'expression de u en fonction de E.

Exercice n°2.2 Niveau 🎝 🎝



Dans ce circuit, toutes les résistances sont identiques de valeur R.

Exprimer u en fonction de E et R

Exercice n°3 Étude d'un circuit RC

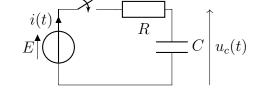
Vous traiterez au choix l'un des deux exercices ci-dessous.

Exercice n°3.1 Circuit RC partiellement chargé 🎝

On étudie la charge d'un condensateur de capacité C à travers une résistance R par un générateur idéal de fem E.

Le condensateur est déjà partiellement chargé (pour t < 0) sous une tension U_0 , avec $0 < U_0 < E$.

À t=0, on ferme l'interrupteur, et le générateur débite alors dans l'ensemble série $\{R-C\}$.



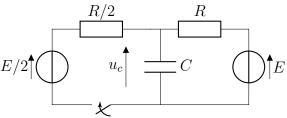
- Q1. Déterminer $u_c(0^+)$, juste après la fermeture de l'interrupteur.
- Q2. Établir l'équation différentielle vérifiée par u_c . Identifier τ . Quel est son nom? son unité?
- Q3. Déterminer complètement, en tenant compte de la condition initiale, l'expression de $u_c(t)$.
- Q4. Représenter l'allure de la courbe de $u_c(t)$. On indiquera clairement U_0 et E sur la courbe.
- Q5. Exprimer $u_c(\tau)$ en fonction de U_0 et de $(E U_0)$, sous la forme : $u_c(\tau) = a \times U_0 + b \times (E U_0)$, où a et b sont deux valeurs à déterminer.

On donne $e^{-1} \approx 0,37$.

Q6. Exploiter cette relation pour faire apparaı̂tre τ sur l'allure de u_c précédente.

Exercice n°3.2 Deux générateurs 🎝 🎝

Dans le montage ci-contre, l'interrupteur est ouvert depuis très longtemps. On le ferme à l'instant t=0.



- Q1. Déterminer pour t < 0, la tension u_c en régime permanent. En déduire, en justifiant proprement, $u_c(0^+)$, juste après la fermeture de l'interrupteur.
- Q2. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ Établir l'équation différentielle vérifiée par u_C et l'écrire sous la forme :

$$\frac{\mathrm{d}u_c}{\mathrm{d}t} + \frac{u_c}{\tau} = \frac{u_c(\infty)}{\tau}$$

Identifier τ et $u_c(\infty)$.

- Q3. Résoudre cette équation différentielle, compte-tenu de la condition initiale.
- Q4. Représenter la courbe de la solution.
- Q5. Déterminer le temps t_1 nécessaire pour que la valeur finale soit atteinte à 1% près.