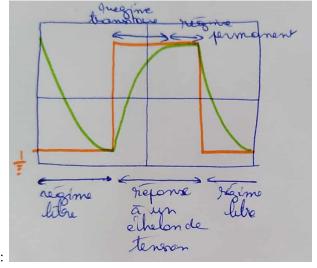
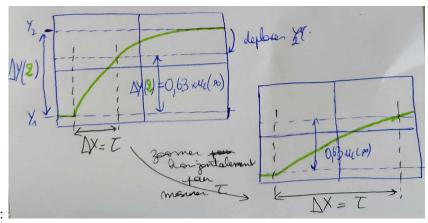

Thème I. Ondes et signaux (Électricité)

TP n°4 Mesure de la capacité d'un condensateur — *Corrigé*

Vendredis 3 & 10 octobre 2025


Montage et observations

Q1. .


Q2. Points d'attention:

- Respect des couleurs des câbles, tous les câbles noirs vont au même endroit.
- Allumer l'output du GBF.
- Régler l'échelle verticale et horizontale pour être dans de bonnes conditions d'observations.

Q3. Observations:

II Mesure de C par mesure de au

- Choisir une valeur de R.
- Régler la fréquence f du GBF pour observer complètement le régime transitoire.
- Mesurer avec les curseurs horizontaux l'écart de tension entre le début et la fin de la charge : $u_c(\infty)$.
- Calculer 63% de cette valeur.

200

— Déplacer le curseur du haut pour le mesurer cette valeur : $0,63 \times u_c(\infty)$.

500

— Zoomer sur le début de la charge, et utiliser les curseurs verticaux en plaçant le premier au début de la charge et le deuxième quand u_c atteint $0,63 \times u_c(\infty)$.

700

800

900

1000

— En déduire τ .

100

 $R(\Omega)$

— Reproduire pour plusieurs valeurs de R.

300

Q5. Q6.₁	$\tau(\mu s)$ 14,48	24, 30	34, 10	43, 6	53,60	62,7	71,7	81,80	93	102,8				
• 1	$ \begin{array}{ccc} \text{Cmoy} &= & \text{np.mean(C)} \end{array} $													
2	s_C = np.std(C,ddof=1)													
3	$u_C = s_C/$	np.sqr	t(len	(C))										

600

$$\overline{C} = 1,11147857.10^{-7} \text{ F}$$

 $u(\overline{C}) = 4,2115214449.10^{-9} \text{ F}$

Q7. Résultat de l'expérience :

$$C = 1{,}111 \times 10^{-7} \text{ F}$$
; $u(C) = 0{,}042 \times 10^{-7} \text{ F}$

III Mesure avec le capacimètre

- Q8. Valeur mesurée avec le capacimètre : $C=117,9~\mathrm{nF}$
- Q9. Sur la notice, il est indiqué 1%L + 2UR
- Q10. La précision vaut $0,01\times 117,9+2\times 0,1=1,379~\mathrm{nF}$ L'incertitude-type vaut donc $u(C)=\frac{\mathrm{précision}}{\sqrt{3}}=0,796166~\mathrm{nF}$
- Q11. Résultat de l'expérience :

$$C = 117,90 \text{ nF}$$
 ; $u(C) = 0,80 \text{ nF}$

IV Comparaison

Q12. Pour comparer deux mesures, on utilise l'écart-normalisé : $EN = \frac{C_2 - C_1}{\sqrt{u(C_2)^2 + u(C_1)^2}}$ et comparer à 2. Si

EN < 2, les deux mesures ne sont pas incompatibles. Si EN > 2, les deux mesures sont incompatibles.

Q13. Ici :
$$EN = \frac{117, 9 - 111, 1}{\sqrt{4, 2^2 + 0, 8^2}} = 1, 57 < 2$$

Les deux mesures sont compatibles.

V Amélioration du modèle

Q14. Nous n'avons pas pris en compte le fait que le GBF n'était pas idéal, et qu'il avait une résistance interne de 50 Ω .

La résistance totale du circuit est de $R_{\rm tot} = 50~\Omega + R$

La constante de temps du circuit s'exprime selon $\tau = R_{\text{tot}} \times C$.

Il faudrait reprendre l'exploitation effectuée au début en calculant C par : $C = \frac{\tau}{R + 50 \ \Omega}$

	P	ilan	411	TD
/	ப	man	$\mathbf{u}\mathbf{u}$	\mathbf{L}

D.	1		11			
Кı	lan	en	Θ	ectr	101	tρ
1 21.	ш	\sim 11	-	-	\mathbf{L}	\cdot

- Un oscilloscope se branche comme un voltmètre, en <u>parallèle</u> du dipôle.
- Les parties <u>extérieures</u> des bornes BNC du GBF et de l'oscilloscope sont reliées à la <u>Terre</u> via la prise secteur, et ramène donc la <u>Terre</u> dans le circuit. Par convention, le fil <u>noir</u> d'un câble BNC-banane est relié à la carcasse métallique du GBF/oscilloscope et donc à la <u>Terre</u>.
- Dans un circuit électrique, il faut veiller à ce qu'il n'y ait qu'une seule <u>masse</u>, pour ne pas <u>court</u> <u>circuiter</u> une partie du circuit. Par conséquent, le dipôle aux bornes duquel on veut visualiser la tension, doit avoir une <u>borne</u> commune avec la <u>masse</u> du GBF.
- Pour visualiser la charge et la décharge d'un condensateur, le circuit RC est alimenté par un signal <u>créneau</u>, compris entre <u>0V</u> et une <u>tension</u> <u>constante</u>. Pour observer complètement le régime transitoire, l faut choisir une fréquence du créneau suffisamment <u>faible</u> (mais pas trop non plus!).

■ Bilan sur les incertitudes

•	Les notices d	les appareil	ls de mesure	comme l	e voltn	iètre, l	'ampèrei	nètre, l	'ohmmètre,	le capacimè	ètre
	indique la pr	récision des	s mesures ef	fectuées s	ous la	forme	:				

% <u>lecture</u> + k <u>unité</u> de <u>représentation</u> (notée <u>UR</u>). Cette UR représente l'<u>unité</u> du <u>dernier</u> chiffre affiché sur l'appareil.

- En l'absence d'information précise sur la nature de cette « précision », on considère qu'elle représente la <u>demie</u> <u>largeur</u> de l'intervalle dans lequel il est raisonnable de considérer que le résultat de la mesure se trouve.
- Une fois la précision calculée à partir de la notice, l'<u>incertitude</u> -<u>type</u> se calcule en divisant la précision par $\sqrt{3}$.
- Pour comparer deux mesures de la même grandeur par deux protocoles différents, on calcule l'<u>écart</u> <u>normalisé</u>.

Par convention, on considère que les deux mesures ne sont pas incompatibles si l'<u>écart</u> normalisé est <u>inférieur</u> à <u>2</u>.