Pour jeudi 27 novembre 2025 Devoir Maison n°7

Travail à refaire :

- Reprendre le DS n°4, en fonction de ce que vous avez ou non réussi à faire.
- Refaire les questions demandées, selon vos points.
- Pour celles et ceux qui avaient le sujet n°2, traiter l'exercice du DM à la fin.
- Pour celles et ceux qui avaient le sujet n°1, et qui ont eu une bonne note, et donc peu de questions à reprendre dans le DS n°4, traiter l'exercice du DM à la fin.

I Reprise du DS n°4

Exercice n°1 Circuits élec en RSF (sujet n°1)

- Q1. À refaire si vous n'avez pas eu 100% des points. Comprendre d'où est venue votre erreur et comment ne pas la refaire.
- Q2. (a) Ne pas refaire
 - (b) Refaire si vous n'avez pas eu 100% des points :
 - Quels dipôles peut-on associer en premier? Comment sont-ils? Comment s'exprime son impédance équivalente? Le faire.
 - Reproduire le circuit avec cette impédance équivalente.
 - Comment sont les deux dipôles?
 - Conclure sur l'expression Z_{AB}

Q3. Refaire si vous n'avez pas eu 100% des points :

- Comment sont les dipôles?
- Associer L et C. Pourquoi ne faut-il passe associer R? Reproduire le circuit.
- Comment sont R et l'impédance équivalente?
- Comment exprime-t-on une tension aux bornes d'un dipôle en série avec un autre?

Exercice n°2 Étude d'un circuit RLC (sujet n°1)

À refaire pour les questions où vous n'avez pas eu 100% des points.

- Q1. Il y a 3 résistances en série : pourquoi?
- Q2. Cf méthode du cours, à suivre scrupuleusement. Ce circuit a été étudié dans le cours!
- Q3. Cf méthode du cours, à suivre scrupuleusement. Ce circuit a été étudié dans le cours!
- Q4. RAS
- Q5. Résolution à refaire si vous n'avez pas eu 100% des points. Suivre les étapes rédigées dans le cours (cf vos notes manuscrites).
- Q6. Calculs à refaire.

N'oubliez pas la solution particulière dans l'expression de u_c pour déterminer les constantes d'intégration.

Exercice n°3 Airbag

- Q1. Ne pas refaire.
- Q2. Ne pas refaire.
- Q3. Ne pas refaire.
- Q4. Résolution à refaire si vous n'avez pas eu 100% des points.
 - (a) Suivre les étapes rédigées dans le cours (cf vos notes manuscrites). La solution devra faire intervenir a_e , ω_0 et t uniquement.

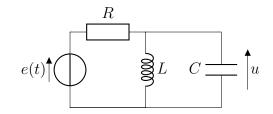
- (b) Pourquoi la solution particulière ne vaut pas a_e ?
- (c) Comparer les unités de X, a_e , $\frac{a_e}{\omega_0^2}$, $\frac{a_e}{\omega_0}t$.
- Q5. À refaire. N'oubliez pas que le régime permanent est donné par la solution particulière.
- Q6. Tracer à faire proprement sur $[0, t_0]$ en respectant les conditions initiales, et la valeur finale déterminée précédemment.

La suite est à faire COURS OUVERT (§I.5 du chapitre n°7).

Vous devez tou.te.s la faire peu importe votre note et ce que vous avez ou non réussi à faire pendant le DS.

Rq: pour le sujet n°2 les questions concernées à reprendre sont celles numérotées de Q7 à Q9

- Q7. Pour tou.te.s: À faire
- Q8. Pour tou.te.s: À faire
 - (a) À partir de l'expression précédente (Q7), exprimer Z_m à l'aide de x, Q, F_0 et k uniquement.
 - (b) En déduire l'amplitude. Il y a une faute de frappe dans l'énoncé (du sujet n°1, pour le sujet n°2; l'expression n'était pas fournie...) : au numérateur c'est F_0/k et non F_0/M .
- Q9. Pour tou.te.s: À faire
 - (a) Exprimer la dérivée de g : attention aux calculs! Chercher ses annulations.
 - (b) À quelle condition, sur Q, $x^2 = 1 \frac{1}{2Q^2}$ existe et correspond bien à une annulation de la dérivée de g?
 - (c) Pourquoi peut-on se contenter d'étudier g (sans se préoccuper du numérateur)?
 - Quel est le lien entre les variations de g et celles de Z_m ?
 - Exprimer la pulsation de résonance ω_r en fonction de ω_0 et Q.
 - Conclure par une phrase : « Il se produit une résonance pour la pulsation de l'excitation $\omega_r = \dots$ (son expression) à la condition que Q...... Sinon, aucune résonance n'a lieu. »
- Q10. Pour tou.te.s: À faire

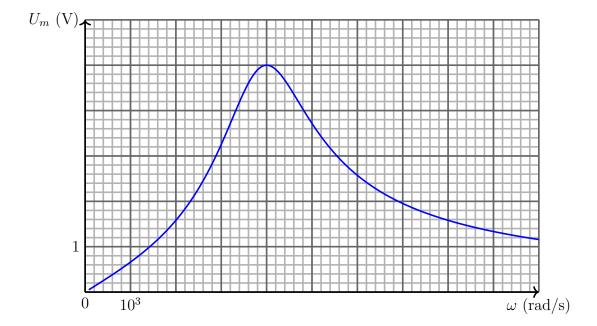

Tracer l'allure de $Z_m(\omega)$ lorsque Q=2 et Q=0,5. Question ajoutée par rapport au sujet n°2, à faire quelqu'était votre sujet de DS.

- Comparer les deux valeurs de Q à la condition établie précédemment pour observer une résonance.
- Tracer les deux courbes : indiquer les axes (attention ce n'est pas un graphe temporel!), indiquer l'expression de Z_m à basse fréquence (d'où part le graphe), la pulsation de résonance le cas échéant,

Il Exercice du DM : Étude d'un circuit résonant

On étudie le circuit ci-contre alimenté en régime sinusoïdal par un générateur de fem $e(t) = E_m \cos(\omega t)$.

On étudie la tension aux bornes de l'association parallèle du condensateur et de la bobine.



- Q1. Sous quelle forme s'écrit u(t)?
- Q2. Déterminer, sans calculs, la valeur de u à basse et haute fréquences. Une justification précise est attendue.
- Q3. Donner la représentation complexe de e et u. Définir l'amplitude complexe U_m de \underline{u} .
- Q4. Établir l'expression de l'amplitude complexe $\underline{U_m}$ et l'écrire sous la forme :

$$\underline{U_m} = \frac{E_m}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

Identifier les expressions de ω_0 et Q en fonction de R, L et C.

- Q5. Exprimer l'amplitude U_m de u(t).
- Q6. Justifier que u présente une résonance pour une pulsation que l'on établira en fonction de ω_0 . Y a-t-il une condition sur le facteur de qualité pour son existence?
- Q7. Définir les pulsations de coupure et la bande passante.
- Q8. Rappeler la relation entre la largeur de la bande passante, la pulsation propre et le facteur de qualité.
- Q9. Exploiter le graphique ci-dessous pour déterminer les valeurs de ω_0 et Q.

