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Tu peux le faire
Ne doute pas de tes capacités

N’abandonne pas et reste concentré.e
Crois en toi

Tu as les ressources en toi pour réussir
Fais de ton mieux.
Ne lâche rien

Devoir Surveillé n°7 (1) − Mécanique
Lundi 26 janvier 2026 − Durée : 4 heures

La calculatrice est INTERDITE

Sur la forme :
Ma copie est rédigée sur des copies doubles. o

Prendre une nouvelle copie double pour chaque exercice. o

Ma copie est propre. o

Chaque réponse commence par une phrase / des mots. o

Les résultats littéraux sont encadrés, les applications numériques soulignées. o

Un long trait horizontal est tiré entre chaque question. o

Les pages sont numérotées. o

Sur le fond :
Les expressions littérales sont homogènes. o

Les applications numériques sont suivies d’une unité adaptée. o

Check-list à cocher !

Ce sujet comporte 6 exercices totalement indépendants qui peuvent être traités dans l’ordre
souhaité. L’énoncé est constitué de 8 pages.
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Données numériques
• g = 10 m · s−2

• ln(100) = 4, 6
• 10−1,25 ' 0, 056
• (80/3, 6)2 ' 5× 102 ; (80× 3, 6)2 ' 8× 104

• 21/6 ≈ 1, 1 ; 21/12 ≈ 1, 1 ; 2−1/6 ≈ 0, 9 ; 2−1/12 ≈ 0, 9
• Lois de Coulomb.

On note T la norme de la composante tangentielle et N la norme de la composante normale de la
réaction du support.
◦ En l’absence de glissement, T < µsN , où µs est le coefficient de frottement statique.
◦ En présence de glissement, T = µdN , où µd est le coefficient de frottement dynamique.

Exercice n°1 TP (Durée ∼ 10 min)
Suite à l’expérience de la chute de la bille de rayon R dans du miel, on obtient la série de valeurs suivantes

pour la viscosité η, qui intervient dans la force de frottement fluide −→f = −6πηR−→v où −→v est le vecteur vitesse.
1 eta = [4.35812022 , 4.46859186 , 4.9553637 , 4.0787473 , 4.84452288 ,

5.22699136 , 5.31601425 , 4.19039548 , 4.54784836 , 4.11190872]
2 >>> np.mean(eta)
3 4.609850412367232
4 >>> np.std(eta ,ddof =1)
5 0.453027608208495
6 >>> np.std(eta ,ddof =1)/np.sqrt(len(eta))
7 0.1432599084877237

Q1. Quelle est l’unité de η ? On l’exprimera à l’aide uniquement des kg, m et s.
Q2. Quelle grandeur calcule np.mean(eta) ? Quelle grandeur calcule np.std(eta,ddoff=1) ? Quelle grandeur

calcule np.std(eta,ddoff=1)/np.sqrt(len(eta)) ?
Q3. Écrire le résultat de l’expérience en étant vigilant.e sur le nombre de chiffres significatifs.
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Exercice n°2 Bulles de champagne (Durée ∼ 50 min)
Dans cet exercice, on cherche à calculer le temps que met une bulle qui se forme en bas d’une
coupe de champagne a pour arriver à la surface. Les bulles de champagne sont constituées de
dioxyde de carbone CO2. Celui-ci, initialement dissout dans le champagne quand la bouteille
est fermée, repasse à l’état gazeux quand on ouvre la bouteille (puisque la pression diminue
alors brusquement).
La bulle étudiée est sphérique de diamètre constant D = 1, 0 mm.
Elle apparait à t = 0 sans vitesse initiale en bas de la coupe à l’altitude z = 0 (axe (Oz)
ascendant), puis remonte jusqu’à la surface.
La hauteur de la coupe est h = 10 cm.

a. L’abus de l’alcool est dangereux pour la santé.

h

•
O

z

Au cours de son ascension, la bulle est freinée par une force de frottement visqueux −→f = −k−→v , où le
coefficient k est donné par la formule de Stokes : k = 6πηr, dans laquelle r est le rayon de la bulle et η la
viscosité du champagne : η = 1, 0× 10−3 Pa · s.

La masse volumique du champagne est quasiment égale à celle de l’eau, soit ρeau = 1, 0× 103 kg · m−3.
La bulle de champagne est constituée de CO2 de masse volumique ρCO2

= 1, 8 kg · m−3 dans les conditions
de l’expérience.
Q1. Rappeler l’expression du volume d’une sphère de rayon r.
Q2. Exprimer le poids et la poussée d’Archimède qui s’exercent sur la bulle de champagne.
Q3. Établir l’équation vérifiée par la composante vz du vecteur vitesse de la bulle.
Q4. Expliquer qualitativement pourquoi la bulle de champagne va atteindre une vitesse limite au cours de son

ascension.
Déterminer ensuite l’expression de vlim en fonction des données de l’énoncé (r, η, ρeau − ρCO2

, g).
Faire l’application numérique.

Q5. Montrer que l’équation différentielle s’écrit

dvz
dt + vz

τ
= vlim

τ

et identifier τ (en fonction de r, η, et ρeau, ρCO2
).

Q6. Résoudre complètement l’équation différentielle satisfaite par vz(t).
Q7. Au bout de combien de temps la bulle a-t-elle atteint sa vitesse limite, à 1% près ? Vous établirez une

expression littérale puis vous ferez l’application numérique.
Q8. Déterminer l’équation horaire du mouvement z(t).
Q9. Compte tenu de la valeur trouvée à la question Q7, justifier qu’on peut considérer que z(t) ≈ vlimt.

Calculer alors le temps T que met la bille pour arriver à la surface.
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Exercice n°3 Étude d’un toboggan rectiligne (Durée ∼ 1h15 )
Partie I Questions de cours autour de l’énergie
Q1. Donner la définition du travail d’une force −→f quelconque entre A et B. Quelle est son unité ?
Q2. Donner la définition d’une force conservative.
Q3. Donner l’expression du travail d’une force conservative entre A et B et la variation de l’énergie potentielle.
Q4. Énoncer le théorème de l’énergie mécanique.

Un toboggan aquatique est un type de toboggan dans lequel un mince filet d’eau assure un glissement du
passager avec de faibles frottements. Il en existe de diverses formes, et cette première partie propose d’étudier
leur dimensionnement.
On s’intéresse à un toboggan rectiligne, comme celui de la figure 1. La différence de hauteur entre le point de
départ et le point d’arrivée est notée h, et le passager démarre en haut (au point A ) avec une vitesse initiale
nulle. On note g l’intensité de la pesanteur et m la masse du passager. On note vB la vitesse du passager à
l’arrivée (au point B).

Figure 1 – Gauche : photographie du toboggan "le géant" du parc de Wavelsland. Pour ce toboggan, qui est
le plus haut de France, h = 33 m et α ' 45◦. Droite : modélisation retenue pour l’étude du toboggan.

Partie II Sans frottement
Dans un premier temps, on néglige tout frottement.
Q5. Effectuer un bilan des forces précis, et préciser les forces qui sont conservatives ou non.
Q6. Exprimer le travail de l’unique force non conservative entre A et B.
Q7. Que peut-on dire de l’énergie mécanique ?
Q8. En utilisant une approche énergétique, exprimer la vitesse atteinte au point B par le passager, en fonction

de h et de g.

On admet que l’application numérique donne vB = 92 km/h.
Q9. Ce résultat dépend-il de la forme du toboggan, à h constant ?
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Partie III Prise en compte des frottements
On prend maintenant en compte les frottements. On utilisera le repère cartésien indiqué sur la figure 1 (droite),
avec −→ex , −→ey et −→ez les vecteurs unitaires de la base. Le mouvement a lieu selon −→ex seulement.
La résultante exercée par le toboggan sur le passager s’écrit : −→R = N−→ez − T−→ex , où T > 0 représente les
frottements solides.
On suppose l’inclinaison du toboggan suffisante pour qu’il y ait mouvement, et on note µ le coefficient de
frottement dynamique.
Q10. (a) Projeter le poids dans la base (−→ex ,−→ez )

(b) Écrire le principe fondamental de la dynamique.
(c) Le projeter dans la direction perpendiculaire au mouvement, et en déduire l’expression de N en

fonction de m, g, et de l’angle α.
(d) En déduire l’expression de T en fonction de µ, m, g, et de l’angle α.

Q11. Exprimer le travail de la force −→R en fonction de µ, m, g et de la distance AB, puis en fonction de µ, m,
g, h et de l’angle α.

Q12. À l’aide de ce qui précède et d’un théorème énergétique, établir l’expression de la vitesse atteinte par
le passager en B, en fonction de µ, h, g et de l’angle α.

Figure 2 – Tracé de l’expression de vB obtenue
dans l’énoncé en fonction du coefficient de

frottement µ, pour α = 45◦.

Q13. La figure 2 montre un tracé de l’expression précédente de vB en fonction de µ. La direction du parc
d’attraction indique que la vitesse maximale atteinte dans son toboggan est de 80 km/h. En déduire une
estimation de la valeur du coefficient de frottement passager-toboggan.

Partie IV Arrivée en bas de la piste
En bas du toboggan se trouve une longue piste horizontale, dans laquelle le passager va ralentir jusqu’à atteindre
une vitesse nulle. On souhaite dimensionner la longueur de cette piste. Les frottements agissent toujours.
Q14. À l’aide des d’un raisonnement énergétique, déterminer la longueur L de la piste en fonction de vB, µ

et g.
On attend une expression puis une valeur numérique.
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Exercice n°4 Étude des oscillations dans une cuvette (Durée ∼ 45 min)
On considère une masse m (point M) astreinte à glisser dans une cuvette de rayon a. Le mouvement a lieu

dans le plan Oxy de la figure 3. On néglige tout frottement. On note −→g le vecteur pesanteur et g sa norme. On
utilise les coordonnées polaires représentées sur la figure 3, avec les vecteurs unitaires −→e r et −→e θ.

Figure 3 – Le point M glisse sans frottement le
long d’un support cylindrique (arc de cercle
grisé). Il n’y a pas de mouvement selon Oz.

Q1. Effectuer un bilan des forces, les représenter sur un schéma.

On souhaite obtenir l’équation différentielle du mouvement de deux façons.

Partie I Première méthode : avec le principe fondamental de la dynamique

Q2. Après avoir écrit le principe fondamental de la dynamique, établir l’équation différentielle du mouvement
reliant θ et θ̈.

Partie II Deuxième méthode : avec l’énergie

Q3. Exprimer l’énergie mécanique de M en fonction de m, g, a, θ, θ̇.
Q4. Donner la définition de la puissance d’une force. Quelle est son unité ?
Q5. Énoncer le théorème de la puissance mécanique.
Q6. En utilisant le théorème de la puissance mécanique, montrer que θ vérifie l’équation différentielle :

θ̈ + g

a
sin(θ) = 0

Partie III Résolution

Q7. Proposer une approximation qui permet de résoudre cette équation.
Sous cette hypothèse, résoudre l’équation. On supposera qu’initialement θ(0) = θ0 > 0 et θ̇(0) = 0.

Q8. Tracer l’allure de la solution θ(t). On fera apparaître les valeurs maximales et minimales atteintes.
Q9. Toujours sous l’hypothèse précédente, donner l’expression de la période des oscillations en fonction de a

et de g.
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Exercice n°5 Interaction entre des atomes de Néon (Durée ∼ 30 min)
On considère un atome de Néon de masse m interagissant avec un autre atome de Néon supposé fixe dans un

référentiel galiléen. Le problème est vu de façon unidimensionnelle selon x, l’atome fixe étant situé en l’origine
O.

L’énergie potentielle correspondant à la force d’interaction −→F qui s’exerce entre les deux atomes est modélisée
par le potentiel de Lennard-Jones :

EP (x) = 4E0

(d
x

)12

−
(
d

x

)6


où x désigne la distance intermoléculaire et σ est une distance caractéristique. L’énergie potentielle est prise
nulle lorsque x→∞, c’est-à-dire lorsque les deux atomes sont infiniment éloignés.
On donne le graphe représentatif de Ep(x).
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Q1. Justifier que l’énergie mécanique de l’atome de néon se conserve.
Q2. Différents mouvements possibles :

(a) À partir de la définition de l’énergie mécanique, donner l’inégalité qui relie Em et Ep(x).
(b) Comment graphiquement (connaissant les courbes représentatives de Em et Ep) détermine-t-on les

positions accessibles à l’atome de carbone ?

Dans les deux questions suivantes, les termes « borné », « non borné », « oscillations périodiques » doivent
apparaître.
(c) Déterminer les positions accessibles à l’atome de néon, si l’énergie mécanique vaut Em,1. Décrire son

mouvement. Quelles sont les positions de vitesse nulle ?
(d) Déterminer les positions accessibles à l’atome de néon, si l’énergie mécanique vaut Em,2. Décrire son

mouvement. Quelles sont les positions de vitesse nulle ?
Le graphe du document réponse devra être complété et rendu avec votre copie.

Q3. Équilibre ?
(a) Comment est l’énergie potentielle en une position d’équilibre ?
(b) À partir de l’expression de Ep(x), montrer que la distance d’équilibre x0 s’exprime selon x0 = 21/6d.
(c) Exprimer Ep(x0) en fonction de E0 uniquement.
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Q4. Stabilité ?
(a) Comment est l’énergie potentielle en une position d’équilibre stable ? instable ?
(b) D’après le graphe, x0 est-elle une position d’équilibre stable ou instable ?

Q5. En exploitant le graphe et les questions précédentes, déterminer les valeurs de d et E0.

Exercice n°6 Toboggan hélicoïdal (Durée ∼ 30 min)
On étudie le toboggan représenté sur la figure ci-dessous :

Figure 4 – Toboggan hélicoïdal

Pour l’étude du mouvement, on propose le modèle suivant :
— L’enfant de masse m = 50 kg, est assimilé à un point matériel M .
— Le toboggan, de forme hélicoïdale, débute en A et se termine en B après 3 tours exactement ; il s’enroule

sur un cylindre vertical de rayon R = 5 m.
— À chaque tour complet, l’enfant descend d’une hauteur h .

Le point M , initialement immobile en A, est repéré par ses coordonnées cylindriques z étant la cote du point
M sur l’axe de symétrie de la trajectoire, choisi vertical descendant.

L’origine O de l’axe Oz est choisie à l’intersection de cet axe et du plan horizontal passant par A.
On étudie le mouvement de l’enfant uniquement d’un point de vue cinématique.

Q1. Quelles sont les coordonnées cylindriques d’un point M ?
Faire un schéma définissant les coordonnées cylindriques, et indiquer dessus la base cylindrique.

Les équations horaires de l’enfant sont :


r(t) = R
θ(t) = ωt
z(t) = H − v0t

où H, R, ω, v0 sont des constantes positives.

Q2. Exprimer le vecteur position de l’enfant −−→OE.
Q3. Exprimer le vecteur vitesse de l’enfant en coordonnées cylindriques, en fonction des constantes du pro-

blèmes et des vecteurs de la base cylindrique.
Q4. Exprimer la norme du vecteur vitesse et conclure sur la nature du mouvement.
Q5. Exprimer le vecteur accélération de l’enfant en coordonnées cylindriques, en fonction des constantes du

problèmes et des vecteurs de la base cylindrique.
Q6. Sachant que l’enfant fait exactement trois tours au cours de la descente, à quel instant arrive-t-il en bas ?

Avec quelle vitesse (=on exprimera sa norme en fonction de h, v0 et ω) ?
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