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Tu peux le faire
Ne doute pas de tes capacités

N’abandonne pas et reste concentré.e
Crois en toi

Tu as les ressources en toi pour réussir
Fais de ton mieux.
Ne lâche rien

Devoir Surveillé n°7 (2) − Mécanique
Lundi 26 janvier 2026 − Durée : 4 heures

La calculatrice est INTERDITE

Sur la forme :
Ma copie est rédigée sur des copies doubles. o

Prendre une nouvelle copie double pour chaque exercice. o

Ma copie est propre. o

Chaque réponse commence par une phrase / des mots. o

Les résultats littéraux sont encadrés, les applications numériques soulignées. o

Un long trait horizontal est tiré entre chaque question. o

Les pages sont numérotées. o

Sur le fond :
Les expressions littérales sont homogènes. o

Les applications numériques sont suivies d’une unité adaptée. o

Check-list à cocher !

Ce sujet comporte 4 exercices totalement indépendants qui peuvent être traités dans l’ordre
souhaité. L’énoncé est constitué de 11 pages.
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Données numériques
• g = 10 m · s−2

• 10−1,25 ' 0, 056
• (80/3, 6)2 ' 5× 102 ; (80× 3, 6)2 ' 8× 104

• 21/6 ≈ 1, 1 ; 21/12 ≈ 1, 1 ; 2−1/6 ≈ 0, 9 ; 2−1/12 ≈ 0, 9
• Vecteur gradient en coordonnées cartésiennes :

−−→grad (f) =
(
∂f

∂x

)

y,z

−→ux +
(
∂f

∂y

)

x,z

−→uy +
(
∂f

∂z

)

x,y

−→uz

• Développement de Taylor au premier ordre au voisinage de x0 : f(x) ≈ f(x0) + df
dx (x0)× (x− x0)

Lois de Coulomb.
On note T la norme de la composante tangentielle et N la norme de la composante normale de la
réaction du support.
◦ En l’absence de glissement, T < µsN , où µs est le coefficient de frottement statique.
◦ En présence de glissement, T = µdN , où µd est le coefficient de frottement dynamique.

Exercice n°1 TP (Durée ∼ 10 min)
Suite à l’expérience de la chute de la bille de rayon R dans du miel, on obtient la série de valeurs suivantes

pour la viscosité η, qui intervient dans la force de frottement fluide −→f = −6πηR−→v , où −→v est le vecteur vitesse.
1 eta = [4.35812022 , 4.46859186 , 4.9553637 , 4.0787473 , 4.84452288 ,

5.22699136 , 5.31601425 , 4.19039548 , 4.54784836 , 4.11190872]
2 >>> np.mean(eta)
3 4.609850412367232
4 >>> np.std(eta ,ddof =1)
5 0.453027608208495
6 >>> np.std(eta ,ddof =1)/np.sqrt(len(eta))
7 0.1432599084877237

Q1. Quelle est l’unité de η ? On l’exprimera à l’aide uniquement des kg, m et s.
Q2. Quelle grandeur calcule np.mean(eta) ? Quelle grandeur calcule np.std(eta,ddoff=1) ? Quelle grandeur

calcule np.std(eta,ddoff=1)/np.sqrt(len(eta)) ?
Q3. Écrire le résultat de l’expérience en étant vigilant.e sur le nombre de chiffres significatifs.
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Exercice n°2 Gouttes de pluie (Durée ∼ 1h10 )
Partie I Vitesse des gouttes de pluie
On s’intéresse à la chute dans l’air d’une goutte d’eau de diamètreD et de masse volumique ρ = 1, 0 · 103 kg · m−3.
On prendra pour l’air une masse volumique égale à ρa = 1, 3 kg · m−3.

Le référentiel terrestre est supposé galiléen. L’axe Oz est vertical descendant. L’accélération de la pesanteur
vaut −→g = g−→ez avec g = 9, 8 m · s−2.
Q1. Définir « référentiel galiléen ». Définir et exprimer le poids d’une goutte d’eau, en fonction uniquement des

données ρ, D et −→ez .
Q2. On admet que la seule autre force mise en jeu est la force de frottement, due à l’air, proportionnelle au

carré de la vitesse v de la goutte. Elle s’écrit :
−−−→
Ffrott = −CπρaD2v2−→ez avec C = 6, 0 · 10−2.

Vérifier l’homogénéité de cette formule.
Q3. En appliquant la seconde loi de Newton à la goutte dans le référentiel terrestre, montrer que sa vitesse

limite, donc indépendante du temps, s’écrit :

−→vlim = K
√
D−→ez

où K est un coefficient à exprimer en fonction de ρ, ρa, C et de g.

Gunn et Kinzer ont mesuré en 1949 avec précision des vitesses limites de gouttes de différents diamètres. Les
résultats de leurs mesures avec les barres d’incertitudes sont reportés sur la figure 1 en trait plein ainsi que la
représentation de la relation obtenue en Q3 en traits pointillés.
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Le soleil a rendez-vous avec la pluie 
 

Ce sujet traite des gouttes d’eau et de l’arc-en-ciel qui résulte de l’interaction des rayons solaires 
avec la pluie.  
 
Il est constitué de 8 parties qui peuvent être résolues de manière totalement indépendante les unes 
des autres.  
 
Dans les parties I et II (mécanique du point) et III (électrostatique), on s’intéresse d’abord à la vitesse 
limite de chute des gouttes de pluie et à la mesure de leurs diamètres, puis, dans la partie IV, à la 
répartition (distribution) de ces diamètres dans une averse et, dans la partie V (étude d’un signal), 
à une autre mesure de ces diamètres. 
 
Ensuite, dans les parties VI (optique géométrique) et VII (interférences), on étudie les phénomènes 
optiques engendrés par les gouttes d’eau éclairées par le Soleil. 
 
Enfin, la dernière partie VIII (chimie) s’intéresse à la valorisation des eaux de pluie.  
 
Dans tout le sujet, on suppose les gouttes d’eau sphériques. L’ordre de grandeur de leur diamètre, 
noté D, est le millimètre. 
 
 
 

Partie I - Vitesse des gouttes de pluie 
 
On s’intéresse à la chute dans l’air d’une goutte d’eau de diamètre D et de masse volumique 

3 31,0 10 kg mρ −= ⋅ ⋅ . On prendra pour l’air une masse volumique égale à 31,3 kg maρ
−= ⋅ . 

 
Le référentiel terrestre est supposé galiléen. L’axe Oz est vertical descendant. L’accélération de la 
pesanteur vaut zg ge=

 

 avec 29,8 m sg −= ⋅ . 
 
Q1. Définir " référentiel galiléen ". Définir et exprimer le poids d’une goutte d’eau. 
 
Q2. On admet que la seule autre force mise en jeu est la force de frottement, due à l’air, 

proportionnelle au carré de la vitesse v de la goutte. Elle s’écrit :  
 

2 2
frott a zF C D v eπρ= −
 

 avec 26,0 10 .C −= ⋅  
 
 Vérifier l’homogénéité de cette formule. 
 
Q3. En appliquant la seconde loi de Newton à la goutte dans le référentiel terrestre, montrer que 

sa vitesse limite, donc indépendante du temps, s’écrit :  
 

lim zv K D e=
 

 
 

où K est un coefficient à exprimer en fonction de ρ , aρ , C et de g. 
 
Calculer la vitesse limite pour des diamètres égaux à 1 mm, 3 mm et 5 mm.  
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Gunn et Kinzer ont mesuré en 1949 avec précision des vitesses limites de gouttes de différents 
diamètres. Les résultats de leurs mesures avec les barres d’incertitudes sont reportés sur la figure 1 
en trait plein ainsi que la représentation de la relation obtenue en Q3 en traits pointillés.   

 
Q4. Pour quelle(s) raison(s) le modèle théorique élaboré aux questions de Q1 à Q3 n’est-il pas 

validé pour toutes les tailles de gouttes ?  
 

 

Figure 1 - Influence du diamètre sur la vitesse limite 

Selon les précipitations, la taille des gouttes de pluie est très variable. La distribution des tailles de 
goutte, qui renseigne sur les événements météorologiques, doit souvent être mesurée. On utilise 
pour cela un disdromètre ("Distribution of Drops Meter"). 

 
 

Partie II - Disdromètre à impact avec platine     
 
On suppose dans cette partie que la vitesse limite atteinte par une goutte de diamètre D qui tombe 
dans l’atmosphère est donnée par la relation :  
 

lim zv K D e=
 

 avec 1/2 1150 m sK −= ⋅  . 
 
Il existe deux types de disdromètres : le plus ancien est le disdromètre à impact (photo 1). 
 
 
 
 
 
 
 
 
 
 
 
 

Photo 1 - Disdromètre Joss-Waltvogel 
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Figure 1 – Influence du diamètre sur la vitesse limite

Q4. Pour quelle(s) raison(s) le modèle théorique élaboré aux questions de Q1 à Q3 n’est-il pas validé pour toutes
les tailles de gouttes ?
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Partie II Disdromètre à impact avec platine
On suppose dans cette partie que la vitesse limite atteinte par une goutte de diamètre D qui tombe dans
l’atmosphère est donnée par la relation : −→vlim = K

√
D−→ez , avec K = 150 m1/2 · s−1.

On s’intéresse à un disdromètre à impact. Il se compose d’une platine sensible recevant les gouttes de pluie de
masse m(D) ayant atteint leur vitesse limite et d’un système de traitement permettant la mesure de celle-ci.
On modélise la platine par un disque plan horizontal, de rayon R et de masse M , relié à un support fixe par
l’intermédiaire d’une suspension, modélisée par un système masse-ressort amorti.
On note k la raideur du ressort liant la platine au support, `0 sa longueur à vide et λ le coefficient de frottement
traduisant l’amortissement du disque : la force de frottement, qui s’oppose à la vitesse de la platine, s’écrit donc
platine −→f = −λ−−−→vplatine

La goutte exerce, lors de son impact sur la platine, une force
−−→
F (t) = F (t)−→ez verticale sur celle-ci.

Le référentiel lié au support est supposé galiléen.
Le déplacement de la platine du disdromètre par rapport à sa position d’équilibre est Z(t) (figure 2).

4/16 
 

Il se compose d’une platine sensible recevant les gouttes de pluie de masse m(D) ayant atteint leur 
vitesse limite et d’un système de traitement permettant la mesure de celle-ci.  
 
On modélise la platine par un disque plan horizontal, de rayon R et de masse M, relié à un support 
fixe par l’intermédiaire d’une suspension, modélisée par un système masse-ressort amorti.  
 
On note k la raideur du ressort liant la platine au support, 0l  sa longueur à vide et λ  le coefficient 
de frottement traduisant l’amortissement du disque : la force de frottement, qui s’oppose à la vitesse 
de la platine, s’écrit donc platinef vλ= −

 

.    
 
La goutte exerce, lors de son impact sur la platine, une force ( ) ( ) zF t F t e=





 verticale sur celle-ci.  
 
Le référentiel lié au support est supposé galiléen.  
 
Le déplacement de la platine du disdromètre par rapport à sa position d’équilibre est ( )Z t  (figure 2). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Modélisation du disdromètre à impact à platine  

 
Q5. Exprimer la longueur équl  du ressort à l’équilibre de la platine, sans impact de goutte. 
 
Q6. Montrer que l’équation liant ( )Z t  à ( )F t  est :  
 

( ) ( ) ( )2

2
( ) dZ t F td Z t Z t

dt Mdt
γ β+ + =  

 
 et exprimer les coefficients γ  et β  en fonction de k, M et de λ . 
  
 
 

 Support  fixe     

m(D),vlim(D) 

0 

 

 

𝜆𝜆𝜆𝜆 

Position d’équilibre de la platine                            

Platine à l’instant t Z(t) 

z 

g


 

Figure 2 – Modélisation du disdromètre à impact à platine

Q5. Exprimer la longueur `éq du ressort à l’équilibre de la platine, sans impact de goutte. Vérifier la cohérence
physique en comparant `éq à `0.

Q6. Montrer que l’équation liant Z(t) à F (t) est :

d2Z

dt2 + γ
dZ
dt + βZ(t) = F (t)

M

et exprimer les coefficients γ et β (on vérifiera bien qu’ils sont tous les deux positifs !) en fonction de k, M
et λ.

La force F (t) est modélisée par :

• F = F0 = m(D)vlim(D)
τ(D) pour 0 < t < τ

• F = 0 pour t > τ .
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Q7. Donner la signification physique de τ et justifier que son ordre de grandeur est :

τ(D) ≈ D

vlim(D)

On utilise en pratique un facteur correctif ξ = 0, 65 tel que :

τ(D) = ξ
D

vlim(D) .

Calculer τ pour D = 2, 5 mm.

On se place à 0 ≤ t ≤ τ(D) et on souhaite que la réponse du disdromètre soit la plus rapide possible.
Q8. Quelle doit être la relation entre les coefficients β et γ ?

On se place dans ce cas.
Q9. Le système étant à l’équilibre avant la chute de la goutte, montrer que la réponse du disdromètre s’écrit

alors pour 0 ≤ t ≤ τ :
Z(t) = F0

k

[
1−

(
1 + γ

t

2

)
e−γt/2

]

Q10. Comment choisir γ pour réaliser Z(τ) = F0

k
? Montrer alors que Z(τ) est proportionnel à Dα et donner la

valeur de α.
Q11. Tracer l’allure de Z(t) pour 0 ≤ t ≤ 2τ .
Q12. Comment la mesure de Z(t) permet-elle de connaître D ?
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Exercice n°3 Parc d’attraction (Durée ∼ 1h45)
Partie I Étude d’un toboggan rectiligne (Durée ∼ 30 min )

Un toboggan aquatique est un type de toboggan dans lequel un mince filet d’eau assure un glissement du
passager avec de faibles frottements. Il en existe de diverses formes, et cette première partie propose d’étudier
leur dimensionnement.

On s’intéresse à un toboggan rectiligne, comme celui de la figure 3. La différence de hauteur entre le point
de départ et le point d’arrivée est notée h, et le passager démarre en haut (au point A) avec une vitesse initiale
nulle. On note g l’intensité de la pesanteur et m la masse du passager. On note vB la vitesse du passager à
l’arrivée (au point B).

Figure 3 – Gauche : photographie du toboggan "le géant" du parc de Wavelsland. Pour ce toboggan, qui est
le plus haut de France, h = 33 m et α ' 45◦. Droite : modélisation retenue pour l’étude du toboggan.

Dans un premier temps, on néglige tout frottement.
Q1. En utilisant une approche énergétique, exprimer la vitesse atteinte au point B par le passager, en fonction

de h et de g.

On admet que l’application numérique donne vB = 92 km/h.
Q2. Ce résultat dépend-il de la forme du toboggan, à h constant ?

On prend maintenant en compte les frottements. On utilisera le repère cartésien indiqué sur la figure 3 (droite),
avec −→ex , −→ey et −→ez les vecteurs unitaires de la base. Le mouvement a lieu selon −→ex seulement. La résultante exercée
par le toboggan sur le passager s’écrit : −→R = N−→ez − T−→ex , où T > 0 représente les frottements.
On utilise la loi de Coulomb : tout au long du mouvement, on a la relation T = µ × N avec µ une constante
positive appelée coefficient de frottement.
On suppose l’inclinaison du toboggan suffisante pour qu’il y ait mouvement.
Q3. À l’aide d’un théorème énergétique, établir l’expression de la vitesse atteinte par le passager en B, en

fonction de µ, h, g et de l’angle α.
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Figure 4 – Tracé de l’expression de vB obtenue
dans l’énoncé en fonction du coefficient de

frottement µ, pour α = 45◦.

Q4. La figure 4 montre un tracé de l’expression précédente de vB en fonction de µ. La direction du parc
d’attraction indique que la vitesse maximale atteinte dans son toboggan est de 80 km/h. En déduire une
estimation de la valeur du coefficient de frottement passager-toboggan.

En bas du toboggan se trouve une longue piste horizontale, dans laquelle le passager va ralentir jusqu’à atteindre
une vitesse nulle. On souhaite dimensionner la longueur de cette piste.
Q5. À l’aide des données précédentes et d’un raisonnement énergétique, indiquer quelle doit être la longueur L

de la piste. On attend une expression et une valeur numérique.

Partie II Étude d’un virage (Durée ∼ 40 min)
On s’intéresse maintenant à un toboggan possédant un virage. Il est d’abord nécessaire d’établir quelques
résultats préliminaires.
Partie II.1 Préliminaire : Étude des oscillations dans une cuvette
Cette sous-partie est indépendante du reste. On considère une masse m (point M) astreinte à glisser dans une
cuvette de rayon a. Le mouvement a lieu dans le plan Oxy de la figure 5. On néglige tout frottement. On note
−→g le vecteur pesanteur et g sa norme. On utilise les coordonnées polaires représentées sur la figure 5, avec les
vecteurs unitaires −→e r et −→e θ.

Figure 5 – Le point M glisse sans frottement le
long d’un support cylindrique (arc de cercle
grisé). Il n’y a pas de mouvement selon Oz.

Q6. En utilisant un théorème énergique approprié, montrer que θ vérifie l’équation différentielle :

θ̈ + g

a
sin(θ) = 0

Q7. Proposer une approximation qui permet de résoudre cette équation.
Sous cette hypothèse, résoudre l’équation. On supposera qu’initialement θ(0) = θ0 > 0 et θ̇(0) = 0.

Q8. Tracer l’allure de la solution θ(t). On fera apparaître les valeurs maximales et minimales atteintes.
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Q9. Toujours sous l’hypothèse précédente, donner l’expression de la période des oscillations en fonction de a et
de g.

Partie II.2 Retour au cas du virage dans le toboggan
On étudie un cas où le passager du toboggan arrive avec une vitesse v0 à l’entrée d’un virage de rayon R0. Le
toboggan a une forme de gouttière, et l’effet du virage va être de faire monter le passager le long de la gouttière.
La question est de savoir jusqu’où il va monter : il faut en effet dimensionner la gouttière pour que le passager
ne soit pas éjecté !
On suppose le virage horizontal. On repère par θ la position angulaire du passager dans un plan Oxy représenté
figure 6. On se place dans l’approximation où ce plan Oxy, qui se déplace avec le passager, le fait
à une vitesse v0 qui reste constante.
Les informations importantes pour la résolution du problème sont les suivantes :
— Il est possible de mener l’étude dans le référentiel lié au plan Oxy (figure 6, droite), en mouvement dans le

référentiel terrestre.
— Le référentiel dans lequel le plan Oxy est fixe n’est pas galiléen. L’étude peut être menée dans ce référentiel

en ajoutant au bilan des forces qui s’exercent sur le passager une force supplémentaire qui s’écrit −→Fie =
mv2

0
R0

−→ey , appelée force d’inertie d’entraînement.

— On néglige tout frottement dans cette partie.

Figure 6 – Gauche : photographie d’un virage. Droite : repère dans le plan de la gouttière.

Q10. Montrer que la somme des forces qui s’exercent sur le passager s’écrit −→P + −→F + −→N = m−→g eff + −→N , avec
−→g eff une pesanteur "effective" dont on donnera la norme en fonction de g, R0 et v0.

Q11. Donner également l’expression de l’angle α entre −→g eff et l’axe Ox, en fonction de g,R0 et v0.

Par exemple, si v0 = 25 km/h et R0 = 4 m, on obtient ‖−→g eff‖ = 15, 5 m/s2 et α = 51◦. On se place dans ce cas
dans la suite.
Q12. Le passager entre dans le virage avec θ(0) = 0.

En utilisant une analogie avec ce qui a été vu dans la Partie II.1, indiquer entre quelles valeurs extrêmes va
varier θ dans la suite du mouvement. Il n’est pas nécessaire de faire de calculs compliqués pour répondre à
cette question.
Conclure alors sur le dimensionnement de la gouttière dans ce cas ci.
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Partie III Toboggan hélicoïdal (Durée ∼ 35 min )
On étudie le toboggan représenté sur la figure ci-dessous :

Figure 7 – Toboggan hélicoïdal

Pour l’étude du mouvement, on propose le modèle suivant :
— L’enfant de masse m = 50 kg, est assimilé à un point matériel M .
— Le toboggan, de forme hélicoïdale, débute en A et se termine en B après 3 tours exactement ; il s’enroule

sur un cylindre vertical de rayon R = 5 m.
— On néglige tout frottement.
— À chaque tour complet, l’enfant descend d’une hauteur h .

Le point M , initialement immobile en A, est repéré par ses coordonnées cylindriques z étant la cote du point
M sur l’axe de symétrie de la trajectoire, choisi vertical descendant.
L’origine O de l’axe Oz est choisie à l’intersection de cet axe et du plan horizontal passant par A.
Q13. Quelles sont les coordonnées cylindriques d’un point M ?

Faire un schéma définissant les coordonnées cylindriques, et indiquer dessus la base cylindrique.

Les équations de la trajectoire sont données par les relations : r(θ) = R et z(θ) = γ· θ où γ est une constante
positive.
Q14. Exprimer h en fonction de γ.
Q15. Déterminer la vitesse vs de l’enfant en sortie de toboggan en fonction de g et h.
Q16. Exprimer le vecteur position et le vecteur vitesse du point M en fonction de R, z et de leurs dérivées

temporelles θ̇, ż.

Q17. Montrer que l’énergie mécanique de l’enfant peut se mettre sous la forme : Em = 1
2αż

2 − βz, où α et β
sont des constantes à expliciter en fonction des données.

Q18. Déterminer l’équation différentielle satisfaite par z(t) et en déduire la durée T de la descente en fonction
de α, β et h.

Q19. Si on prend en compte une force de frottement de norme constante F , exprimer l’énergie perdue par
l’enfant au cours de la descente, en fonction de F , R et γ.
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Exercice n°4 Interaction entre des atomes de Néon (Durée ∼ 45 min)
On considère un atome de Néon de masse m interagissant avec un autre atome de Néon supposé fixe dans un

référentiel galiléen. Le problème est vu de façon unidimensionnelle selon x, l’atome fixe étant situé en l’origine
O.

L’énergie potentielle correspondant à la force d’interaction −→F qui s’exerce entre les deux atomes est modélisée
par le potentiel de Lennard-Jones :

EP (x) = 4E0



(
d

x

)12

−
(
d

x

)6



où x désigne la distance intermoléculaire et σ est une distance caractéristique. L’énergie potentielle est prise
nulle lorsque x→∞, c’est-à-dire lorsque les deux atomes sont infiniment éloignés.
On donne le graphe représentatif de Ep(x).

0.3 0.4 0.5 0.6 0.7 0.8 0.9
x (nm)

3

2

1

0

1

2

3

E p
(x

)(m
eV

)

Q1. Discuter les différents mouvements possibles à l’aide du graphe de la fonction Ep(x) selon si l’énergie
mécanique de l’atome de néon est positive ou négative. La réponse doit être justifiée. Le graphe du
document réponse devra être complété et rendu avec votre copie.

Q2. Établir l’expression de la distance d’équilibre x0 entre les deux noyaux, en fonction de d. Est-elle une
position stable ? Que représente la quantité E0 ?

Q3. En exploitant le graphe et la question précédente, déterminer les valeurs de d et E0.
Q4. Déterminer l’expression de la force d’interaction entre les deux atomes −→F = Fx(x)−→ux.
Q5. Montrer que, au voisinage de la position d’équilibre, Fx(x) peut se mettre sous la forme F (x0 + ε) = −kε

avec k une constante et ε� x0.

On mettra k sous la forme k = k̃

x2
0
où k̃ sera exprimé en fonction de E0.

Q6. Établir l’équation différentielle du mouvement au voisinage de la position d’équilibre stable. Commenter.
Q7. Exprimer alors la période T0 des petites oscillations de m autour de la position d’équilibre, en fonction de

m, d et E0.
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Exercice n°5 Deux résolutions de problème pour vous occuper
Cet exercice ne doit être abordé que si TOUT LE RESTE du sujet a
été fait.
Partie I Saut à ski à l’élastique

Une nouvelle discipline est apparue récemment : le saut à ski à l’élastique. On s’intéresse à un skieur attaché
à deux élastiques réalisant un saut dans le vide. Les élastiques seront modélisés par des ressorts identiques de
raideur k et de longueur à vide négligeable dont les points d’attache A et B sont distants de 2a et le skieur sera
modélisé par un point matériel de masse m.

8. Donner la signification physique de τ et justifier que son ordre de grandeur est :

τ(D) ≈ D

vlim(D)

On utilise en pratique un facteur correctif ξ = 0, 65 tel que τ(D) = ξ D
vlim(D) . Calculer

τ pour D = 2, 5 mm.

9. On se place à 0 ≤ t ≤ τ(D) et on souhaite que la réponse du disdromètre soit la
plus rapide possible.

(a) Quelle doit être la relation entre les coefficients β et γ ?

(b) On se place dans ce cas. Le système étant à l’équilibre avant la chute de la
goutte, montrer que la réponse du disdromètre s’écrit alors pour 0 ≤ t ≤ τ :

Z(t) = F0
k

[
1−

(
1 + γ

t

2

)
e−

γt
2

]

(c) Comment choisir γ pour réaliser Z(τ) = F0
k ? Montrer alors que Z(τ) est pro-

portionnel à Dα et donner la valeur de α.

(d) Tracer l’allure de Z(t) pour 0 ≤ t ≤ 2τ .

(e) Comment la mesure de Z(t) permet-elle de connaître D ?

Exercice A.2 : Saut à ski à l’élastique

Une nouvelle discipline est apparue récemment : le saut à ski à l’élastique. On s’intéresse
à un skieur attaché à deux élastiques réalisant un saut dans le vide. Les élastiques seront
modélisés par des ressorts identiques de raideur k et de longueur à vide négligeable dont
les points d’attache A et B sont distants de 2a et le skieur sera modélisé par un point
matériel de masse m.

Déterminer la (les) position(s) d’équilibre zeq du skieur et étudier sa (leur)
stabilité.
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Déterminer la (les) position(s) d’équilibre zeq du skieur et étudier sa (leur) stabilité.

Partie II Looping
Une petite bille est posée à une hauteur h du sol sur une rampe de lancement inclinée qui débouche sur un

looping (guide circulaire dans le plan vertical.
Déterminer la hauteur minimale à laquelle il faut placer la petite bille pour qu’elle puisse effectuer un tour

complet de looping sans décoller du guide circulaire.
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