PLAN DU COURS:

B. OSCILLATEURS AMORTIS

- 1. Introduction : Observation expérimentale d'un oscillateur mécanique amorti ; observation expérimentale des différents régimes transitoires d'un circuit RLC série,
- 2. Equation de l'oscillateur mécanique amorti : Mise en équation, mise sous forme canonique, pulsation propre, facteur de qualité.
- 3. Mise en équation du circuit RLC série. Forme canonique de l'équation, pulsation propre, facteur de qualité.
- 4. Analogie électrocinétique circuit RLC oscillateur amorti par frottement fluide linéaire : analogie formelle des équations, commentaire sur le sens physique des grandeurs.
- 5. Etude analytique du cas du RLC série en régime libre : régimes pseudopériodiques, critiques et apériodiques. Pseudo période, facteur de qualité. Durée caractéristique d'amortissement. Décrément logarithmique : expression théorique et détermination expérimentale, sa définition étant fournie.

L'étude mathématique des solutions pour l'oscillateur mécanique est formellement identique à celle conduite sur le cas d'un circuit RLC série en régime libre.

Un polycopié d'auto-évaluation a été distribué, pour guider l'apprentissage de cette partie assez technique.

- 6. Bilans en puissances. Analogies sur les grandeurs énergétiques.
- 7. RLC série en réponse indicielle : expression générale et allures de la solution selon les différents régimes.

Une connaissance parfaite du cours doit être exigée. La résolution des équations différentielles linéaires du second ordre à coefficients constants a fait l'objet d'un chapitre du cours de mathématiques. Elle a, à nouveau, été détaillée lors de l'étude des différents régimes libres du circuit RLC série. C'est un outil usuel pour le physicien. Elle doit donc être traitée sans hésitations.

Questions de cours :

- Etablir l'équation d'un oscillateur harmonique amorti, mécanique ou électrique.
- Savoir en déduire l'équation caractéristique associée.
- Connaître les trois types de solutions et savoir les associer à la condition portant sur le discriminant de l'équation caractéristique.
- Ecrire un bilan en puissance sur le cas d'un circuit RLC série, ou d'un oscillateur mécanique avec frottement linéaire.

Tout exercice sur les oscillateurs amorti en régime transitoire.

OSCILLATIONS FORCES

- 1. Introduction : Observations expérimentales d'un oscillateur mécanique et d'un circuit RLC série ; examen de la simulation d'un circuit RLC soumis à un générateur de tension sinusoïdal en régime transitoire. Interprétation, Régime Sinusoïdal Forcé. Sur le cas du RLC série, mise en équation et discussion des solutions.
- 2. Grandeurs de description d'un signal sinusoïdal : paramètres du signal (amplitude, pulsation, fréquence et période...). Valeur moyenne ou composante continue. Valeur efficace ou moyenne quadratique ou valeur RMS, signification physique.
- 3. Représentation d'une grandeur sinusoïdale. Vecteur de Fresnel et notation complexe. Introduction, lois de Kirchhoff en notation complexe, visualisation dans le plan complexe. Déphasage entre deux signaux sinusoïdaux synchrones.
- 4. Dipôles en RSF: impédances électriques complexes. Cas des dipôles R, L et C, comportements limites en BF et HF.
- 5. Association de dipôles en série.
- 6. Association de dipôles en dérivation. Admittance complexe.

Questions de cours :

- Paramètres de description d'un signal sinusoïdal : amplitude, pulsation fréquence période, phase à l'origine etc...
- Définir et calculer la valeur moyenne d'un signal.
- Définir et calculer la valeur efficace (ou valeur RMS) d'un signal.

Exercices très simples sur l'emploi de la notation complexe en électricité (circuits à une maille) :

Savoir employer la notation complexe, et en déduire l'amplitude d'un signal et l'avance de phase d'un signal par rapport à un autre.

Programme de référence.

1.4. Oscillateurs libres et forcés	
Circuit RLC série et oscillateur mécanique amorti par	Analyser, sur des relevés expérimentaux, l'évolution de la
frottement visqueux.	forme des régimes transitoires en fonction des paramètres
	caractéristiques.
	Prévoir l'évolution du système à partir de considérations
	énergétiques.
	Écrire sous forme canonique l'équation différentielle afin
	d'identifier la pulsation propre et le facteur de qualité.
	Décrire la nature de la réponse en fonction de la valeur du facteur de qualité.
	Déterminer la réponse détaillée dans le cas d'un régime
	libre ou d'un système soumis à un échelon en recherchant
	les racines du polynôme caractéristique.
	Déterminer un ordre de grandeur de la durée du régime
	transitoire, selon la valeur du facteur de qualité.
	Mettre en évidence la similitude des comportements des oscillateurs mécanique et électronique.
	Réaliser l'acquisition d'un régime transitoire pour un
	système linéaire du deuxième ordre et analyser ses
	caractéristiques.
Stockage et dissipation d'énergie.	Réaliser un bilan énergétique.
Circuits électriques en régime sinusoïdal forcé.	Établir et connaître l'impédance d'une résistance, d'un
Impédances complexes.	condensateur, d'une bobine.
impedances complexes.	
Association de deux impédances.	Remplacer une association série ou parallèle de deux
	impédances par une impédance équivalente.