Exercice 1

On veut résoudre l'équation $3\cos x + 2\sin x = \frac{18}{5}$

c'est-à-dire trouver les solutions $(\cos x, \sin x)$

- 1) a) Développer l'expression $A(x) = a\cos(x \phi)$
 - b) Par identification, écrire alors $f(x) = 3\cos x + 2\sin x$ sous la forme A(x) en déterminant $\cos \phi$, $\sin \phi$ et a
 - c) En déduire que l'équation (E) peut s'écrire sous la forme $\cos(x - \phi) = \cos \alpha$

en déterminant $\cos \alpha$ et en choisisssant $\sin \alpha$ tel que $\sin \alpha > 0$.

- d) En déduire x en fonction de α et ϕ puis calculer les solutions $(\cos x, \sin x)$ de l'équation (E).
- 2) Résoudre de même $-\cos x + 3\sin x = -2$

Exercice 2

On donne $\alpha \in [\pi, 3\pi/2]$ tel que $\tan \alpha = 2$

Déterminer $\tan(\alpha/2)$

Exercice 3

Résoudre dans \mathbb{R} l'équation

$$\sqrt{3}\cos x - \sin x = 2\cos(2x).$$

Exercice 4

Résoudre dans \mathbb{R}

- 1) $\sin x + \sin 2x + \sin 3x + \sin 4x = 0$
- 2) $\cos x \cos 3x + \cos 4x \cos 6x = 0$

Exercice 5 Grand classique

On désire calculer le produit $P(x) = \prod \cos(2^k x)$ pour tout $x \in \mathbb{R}$. $0 \le k \le n$

- a) Commencer par traiter le cas x=0 $[\pi]$
- b) Pour $x \neq 0$ $[\pi]$, simplifier $\sin(x)P(x)$ et exprimer P(x)

Exercice 1

FE 04b (Trigo)

On veut résoudre l'équation $3\cos x + 2\sin x = \frac{18}{5}$

c'est-à-dire trouver les solutions $(\cos x, \sin x)$

- 1) a) Développer l'expression $A(x) = a\cos(x-\phi)$
 - b) Par identification, écrire alors $f(x) = 3\cos x + 2\sin x$ sous la forme A(x) en déterminant $\cos \phi$, $\sin \phi$ et a
 - c) En déduire que l'équation (E) peut s'écrire sous la forme $\cos(x - \phi) = \cos \alpha$

en déterminant $\cos \alpha$ et en choisisssant $\sin \alpha$ tel que $\sin \alpha > 0$.

- d) En déduire x en fonction de α et ϕ puis calculer les solutions $(\cos x, \sin x)$ de l'équation (E).
- 2) Résoudre de même $-\cos x + 3\sin x = -2$

Exercice 2

On donne $\alpha \in [\pi, 3\pi/2]$ tel que $\tan \alpha = 2$

Déterminer $\tan(\alpha/2)$

Exercice 3

Résoudre dans R l'équation

$$\sqrt{3}\cos x - \sin x = 2\cos(2x).$$

Exercice 4

Résoudre dans \mathbb{R}

- 1) $\sin x + \sin 2x + \sin 3x + \sin 4x = 0$
- 2) $\cos x \cos 3x + \cos 4x \cos 6x = 0$

Exercice 5

Grand classique

On désire calculer le produit $P(x) = \prod \cos(2^k x)$ pour tout $x \in \mathbb{R}$.

- a) Commencer par traiter le cas x=0 $[\pi]$
- b) Pour $x \neq 0$ $[\pi]$, simplifier $\sin(x)P(x)$ et exprimer P(x)