(E 445a)

(E 449)

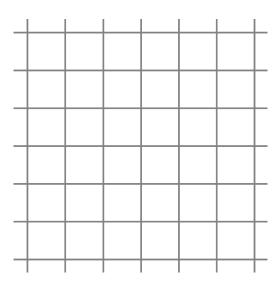
Attention Certaines ne correspondent à aucune formule. Le signaler alors en écrivant « PFC » (Pas de Formule Connue)

1)
$$\left(\frac{a}{b}\right)^n = ?$$
 (E 014a)

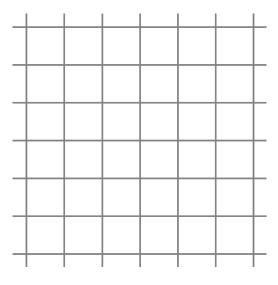
Réponse fausse : -0.5

2)
$$\ln(a^n) = ? \dots$$
 pour $a \dots ; b \dots$ (E 043c)
Réponse fausse : -0,5

3)
$$-\sin(x) = \cos(\dots) = \cos(\dots)$$
 (E 110b)


4)
$$\tan(a-b) = \dots$$
 (E 125b)

Réponse fausse : -0,5


.....

6) Dans
$$\mathbb{R}$$
: $\tan x \ge -1$ (E 176b)

7) Tracer l'allure de la courbe de $x \mapsto |x|$

8) Tracer l'allure de la courbe de
$$x \mapsto |x| \operatorname{sur} [-2, 2]$$

9) Vrai ou Faux?...... (E 502g)

$$\sum_{k=1}^{n} \binom{n}{k} 2^k 5^{n-2k} = \left(\sum_{k=1}^{n} \binom{n}{k} 2^k 5^{n-k}\right) \left(\sum_{k=1}^{n} 5^{-k}\right)$$

10) **Détaillez les étapes :** (E 505c)

$$\sum_{k=1}^{n} (a_{k+1} - a_{k-1}) = \dots$$

.....

11) $\sum_{k=p}^{n} q^k = \dots$ (E 516b)

= pour q

12) Pour $x^2 \neq 1$ et $n \geq 5$ (E 516f)

$$\sum_{k=5}^{n} x^{2k} = \dots$$

.....

Donnner l'écriture la plus simple)

13) (Compléter :) pour n < p (E 537c)

$$\sum_{j=0}^{p} x_j = \sum_{j=0}^{n} x_j \quad \dots \quad \sum \dots$$

14) Factoriser : (sans le signe Σ) (E 555a)

 $a^5 - b^5 = (\dots)(\dots)(\dots)$

- 16) $\underline{\text{D\'efinition}}: \quad \text{Pour } x \in \mathbb{R},$ (E 560)

 $|x| = \dots = \dots$

- 17) Dans $\mathbb{R}: x^2 \le 9 \iff \dots$ (E 570b)
- 19) $x_1 \le a \quad \underline{\text{ou}} \quad x_2 \le a \quad \dots \quad \underline{\text{ou}} \quad x_n \le a$ (E 588d)

 \Longrightarrow Sans les quantificateurs Réponse fausse : -0,5

20) $\max(x_1, \ldots, x_n) \ge a$ (E 589d)

⇔ Sans les quantificateurs Réponse fausse : -0,5

21) Soient $a, b \in \mathbb{R}$ (E 592b) $\max(a, b) \times \min(a, b) = \dots$

(E 707)

22) La propriété suivante est fausse :

(E 603b)

 $\forall x \in \mathbb{R}, \ \forall p \in \mathbb{Z}, \quad |p.x| = p|x|$

Donner un contre-exemple et justifier brièvement

.....

.....

23) Pour $n \ge 1$, $\prod_{k=0}^{n} (a.u_k) = \dots \prod_{k=0}^{n} u_k$ (E 611a)

24) $\binom{n}{p} = \frac{\dots}{\dots} \times (\dots)$ pour (E 629a)

25) Écrire la propriété de Pascal utilisée pour construire le triangle éponyme

..... pour (E 631a)

26) Développer $(x-1)^5$ en utilisant le triangle de Pascal (E 637b)

(Résultat complètement développé et calculé)

27) $\frac{15!}{6! \ 8!} = \dots = \dots \times \begin{pmatrix} 15 \\ 6 \end{pmatrix}$ (E 641a)

28) Soient $a,b,c\in\mathbb{N}$. À quelle condition $\frac{a!}{b!\ c!}$ est-il un coefficient

binomial? (E 647)

29) Contraposée de $(x > 2) \Rightarrow (x^2 = x)$

.....

30) Démonstration de : $\forall x \in \mathbb{N}, \ \exists y \in \mathbb{N}, \ y > x$ (E 715a)

.....

31) Vrai ou Faux? (E 725c)

La proposition suivante dépend de \boldsymbol{y} :

 $\forall x \in E, \ \exists \alpha \in F, \ \forall y \in E, \ |x - y| < \alpha \Rightarrow |f(x) - f(y)| < A$

Q est une condition SUFFISANTE de P se traduit par : $P \Rightarrow Q$