(06/10/2025) Énoncé

FE 06a (Complexes)

Exercice 1 Bijections

• Soit $f: \mathbb{R}\setminus\{-2\} \to E, x \mapsto \frac{3x-1}{x+2}$ Chercher les antécédents de y quand ils existent

En déduire que f est une bijection de $\mathbb{R}\setminus -2$ sur un ensemble E qu'on déterminera.

Donner l'expression alors de la réciproque de f qui a tout élément de Eassocie son antécédent

- Mêmes question avec $f: \mathbb{R}^- \to E, x \mapsto \exp(-x^2)$
- Idem avec $f: \mathbb{R} \to E, x \mapsto \frac{e^x e^{-x}}{2}$ (*)

Exercice 2 Composées

- Soient les fonctions définies sur \mathbb{R} par $f(x) = \frac{2x-1}{x+3}$ $g(x) = \frac{x+1}{x+2}$ Déterminer les domaines de définition de $f, g, f \circ g, g \circ f, f \circ f$ et calculer ces fonctions
- Mêmes questions avec $f(x) = \sqrt{x-3}$, $g(x) = \frac{x+1}{x-2}$

Exercice 3 Nombres complexes

- 1. (Forme algébrique) Mettre les nombres complexes suivants sous forme algébrique : a) $\frac{2+3i}{-4+i}$, b) $\frac{3+7i}{1-3i}$, c) $\frac{2-3i}{1+i} + \frac{2+3i}{1-i}$
- 2. (complexes de module 1) Soient z_1 et z_2 deux nombres complexes de module 1 tels que $z_1 z_2 \neq -1$. Montrer que $\frac{z_1 + z_2}{1 + z_1 z_2} \in \mathbb{R}$.
- 3. Mettre sous forme exponentielle les nombres complexes suivants:
 - b) $z = \sin a \mathbf{i} \cos a$ où $a \in \mathbb{R}$ a) $z_1 = -7 + 7i$
 - c) $z = -\cos a + \mathbf{i}\sin a$ d) $z = \frac{\cos a \mathbf{i}\sin a}{\sin a \mathbf{i}\cos a}$
- 4. Calculer sous forme trigonométrique puis algébrique
 - a) $z_1 = (-2 2\mathbf{i})^7$ b) $z_2 = \left(\frac{3 3\mathbf{i}}{1 + \sqrt{2}\mathbf{i}}\right)^8$

Exercice 1 Bijections

• Soit $f: \mathbb{R}\setminus\{-2\} \to E, x \mapsto \frac{3x-1}{x+2}$ Chercher les antécédents de y quand ils existent

En déduire que f est une bijection de $\mathbb{R}\setminus -2$ sur un ensemble E qu'on déterminera.

Donner l'expression alors de la réciproque de f qui a tout élément de Eassocie son antécédent

- Mêmes question avec $f: \mathbb{R}^- \to E, x \mapsto \exp(-x^2)$
- Idem avec $f: \mathbb{R} \to E, x \mapsto \frac{e^x e^{-x}}{2}$ (*)

Exercice 2 Composées

- Soient les fonctions définies sur \mathbb{R} par $f(x) = \frac{2x-1}{x+3}$ $g(x) = \frac{x+1}{x+2}$ Déterminer les domaines de définition de $f, g, f \circ g, g \circ f, f \circ f$ et calculer ces fonctions
- Mêmes questions avec $f(x) = \sqrt{x-3}$, $g(x) = \frac{x+1}{x-2}$

Exercice 3 Nombres complexes

- 1. (Forme algébrique) Mettre les nombres complexes suivants sous forme algébrique : a) $\frac{2+3i}{-4+i}$, b) $\frac{3+7i}{1-3i}$, c) $\frac{2-3i}{1+i} + \frac{2+3i}{1-i}$
- 2. (complexes de module 1) Soient z_1 et z_2 deux nombres complexes de module 1 tels que $z_1 z_2 \neq -1$. Montrer que $\frac{z_1 + z_2}{1 + z_1 z_2} \in \mathbb{R}$.
- 3. Mettre sous forme exponentielle les nombres complexes suivants :

 - a) $z_1 = -7 + 7\mathbf{i}$ b) $z = \sin a \mathbf{i}\cos a$ où $a \in \mathbb{R}$

 - c) $z = -\cos a + \mathbf{i}\sin a$ d) $z = \frac{\cos a \mathbf{i}\sin a}{\sin a \mathbf{i}\cos a}$
- 4. Calculer sous forme trigonométrique puis algébrique
 - a) $z_1 = (-2 2\mathbf{i})^7$ b) $z_2 = \left(\frac{3 3\mathbf{i}}{\frac{1 + \sqrt{2}\mathbf{i}}{2}}\right)^8$