2025-20 1 CS

Exercice 1

- a) Pour $t \in \mathbb{R}$, linéariser $\cos^5(t)$ et $\cos^3(t)\sin^2(t)$.
- b) Calculer $\cos 6x$ et $\sin 6x$ en fonction de $\sin x$ et $\cos x$

Exercice 2 Expansion et calcul de cosinus)

- a) Pour $\theta \in \mathbb{R}$, exprimer $\cos(5\theta)$ en fonction de $\cos(\theta)$.
- b) En déduire $\cos\left(\frac{\pi}{10}\right)$.

Exercice 3 Soit $\theta \in \mathbb{R}$.

- 1) Mettre le nombre complexe $1 + e^{i\theta}$ sous forme exponentielle.
- 2) Même question pour $1 e^{i\theta}$.
- 3) a) $(\theta_1, \theta_2) \in \mathbb{R}^2$. Factoriser $e^{i\theta_1} + e^{i\theta_2}$.
 - b) Retrouver les formules de factorisation de $\cos p + \cos q$ et $\sin p + \sin q$.

Exercice 4

(Grands classiques)

FE 06b (Complexes)

Calculer
$$V_n = \sum_{k=0}^{n-1} \sin(kx)$$
, $W_n = \sum_{k=0}^n \binom{n}{k} \cos(k+x)$.

Exercice 5 Résoudre dans \mathbb{C} les équations suivantes :

- 1. $2z + (3 + \mathbf{i})\overline{z} = -1 2\mathbf{i}$
- 2. Résoudre de meme : $(2+\mathbf{i})z + (1+\mathbf{i})\overline{z} = \mathbf{i}$

Exercice 6 Racines carrées complexes

- 1. On cherche les racines carrées de $Z=4-3{\bf i}$, c'est-à-dire les complexes $z=x+{\bf i}y$ tels que $z^2=Z$
 - a) Calculer z^2 en fonction de x et y
 - b) Calculer de même $|z|^2$ et |Z|
 - c) En déduire la valeurs de x^2 puis les valeurs possibles de z
- 2. Déterminer de même les racines carrées de $5+12\mathbf{i}$
- 3. Déterminer les solutions de l'équation complexe :

$$2z^2 + (1 + \mathbf{i})z - 2 + 4\mathbf{i} = 0$$

4. Déterminer les complexes (z_1, z_2) tels que $\begin{cases} z_1 + z_2 = 2 + \mathbf{i} \\ z_1 z_2 = 3 \end{cases}$

Exercice 1

- a) Pour $t \in \mathbb{R}$, linéariser $\cos^5(t)$ et $\cos^3(t)\sin^2(t)$.
- b) Calculer $\cos 6x$ et $\sin 6x$ en fonction de $\sin x$ et $\cos x$

Exercice 2 Expansion et calcul de cosinus)

- a) Pour $\theta \in \mathbb{R}$, exprimer $\cos(5\theta)$ en fonction de $\cos(\theta)$.
- b) En déduire $\cos\left(\frac{\pi}{10}\right)$.

Exercice 3 Soit $\theta \in \mathbb{R}$

- 1) Mettre le nombre complexe $1 + e^{i\theta}$ sous forme exponentielle.
- 2) Même question pour $1 e^{i\theta}$.
- 3) a) $(\theta_1, \theta_2) \in \mathbb{R}^2$. Factoriser $e^{i\theta_1} + e^{i\theta_2}$.
 - b) Retrouver les formules de factorisation de $\cos p + \cos q$ et $\sin p + \sin q$.

Exercice 4

(Grands classiques)

Calculer
$$V_n = \sum_{k=0}^{n-1} \sin(kx)$$
, $W_n = \sum_{k=0}^{n} {n \choose k} \cos(k+x)$.

Exercice 5 Résoudre dans \mathbb{C} les équations suivantes :

- 1. $2z + (3 + \mathbf{i})\overline{z} = -1 2\mathbf{i}$
- 2. Résoudre de meme : $(2+\mathbf{i})z + (1+\mathbf{i})\overline{z} = \mathbf{i}$

Exercice 6 Racines carrées complexes

- 1. On cherche les racines carrées de $Z=4-3\mathbf{i}$, c'est-à-dire les complexes $z=x+\mathbf{i}y$ tels que $z^2=Z$
 - a) Calculer z^2 en fonction de x et y
 - b) Calculer de même $|z|^2$ et |Z|
 - c) En déduire la valeurs de x^2 puis les valeurs possibles de z
- 2. Déterminer de même les racines carrées de $5+12\mathbf{i}$
- 3. Déterminer les solutions de l'équation complexe :

$$2z^2 + (1 + \mathbf{i})z - 2 + 4\mathbf{i} = 0$$

4. Déterminer les complexes (z_1, z_2) tels que $\begin{cases} z_1 + z_2 = 2 + \mathbf{i} \\ z_1 z_2 = 3 \end{cases}$