Nombres complexes

Définition 1 : nombre complexe

Un nombre complexe z s'écrit sous forme algébrique z = a + b.iavec $(a,b) \in \mathbb{R}^2$ et **i** un nombre tel que $\mathbf{i}^2 = -1$

a est appelé la partie réelle de z et b sa partie imaginaire;

On note: a = Re(z) et b = Im(z)

- Si Im(z) = 0, alors z est réel
- Si Re(z) = 0, on dit que z est un imaginaire pur et on note $z \in \mathbf{i}.\mathbb{R}$

Propriété 1 : Égalité

$$\parallel z_1 = z_2 \iff \operatorname{Re}(z_1) = \operatorname{Re}(z_2) \text{ et } \operatorname{Im}(z_1) = \operatorname{Im}(z_2)$$

Propriété 2 : Parties réelles, imaginaires

$$\forall (a, b) \in \mathbb{R}^2, \ \forall (z_1, z_2) \in \mathbb{C}^2$$

$$\operatorname{Re}(a.z_1 + b.z_2) = a.\operatorname{Re}(z_1) + b.\operatorname{Re}(z_2)$$

$$\operatorname{Im}(a.z_1 + b.z_2) = a.\operatorname{Im}(z_1) + b.\operatorname{Im}(z_2)$$
En particuliar

En particulier

$$Re(z_1 + z_2) = Re(z_1) + Re(z_2)$$

$$Im(z_1 + z_2) = Im(z_1) + Im(z_2)$$

Attention : ça ne marche pas pour le produit complexe :

$$\operatorname{Re}(z_1 z_2) \neq \operatorname{Re}(z_1).\operatorname{Re}(z_2)$$

Définition 2 : Affixe d'un point, d'un vecteur

Soit z = a + b.i un nombre complexe.

- \bullet On dit qu'un point M du plan a pour affixe z s'il a pour coordonnées (a, b) dans un repère orthonormé $(0, \vec{i}, \vec{j})$. On note alors M(z)
- On dit qu'un vecteur \vec{u} a pour affixe s s'il a pour coordonnées(a,b)dans le même repère c'est-à-dire : $\vec{u} = a.\vec{i} + b.\vec{j}$ On note $\vec{u}(z)$

Interprétation géométrique : somme, produit par un réel.

Conjugué

Définition 3 : Conjugué

$$\forall (a, b) \in \mathbb{R}^2, \ \forall z \in \mathbb{C} \quad \overline{z} = \overline{a + \mathbf{i}.b} = a - \mathbf{i}.b$$

Interprétation géométrique

Propriété 3 : Compatibilité avec les opérations

$$\forall (a,b) \in \mathbb{R}^2, \ \forall (z,z') \in \mathbb{C}^2$$

$$\bullet \ \, \stackrel{=}{z} = z \qquad \overline{a.z + b.z'} = a.\overline{z} + b.\overline{z'}$$

•
$$\overline{z.z'} = \overline{z}.\overline{z'}$$
 Pour $z_2 \neq 0$, $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}$

• pour
$$n \in \mathbb{Z}$$
, $\overline{z^n} = (\overline{z})^n$

Propriété 4 : parties imaginaires, réelles

Module

Définition 4 : Module

$$|z| = \sqrt{z\overline{z}}$$

Propriété 5

$$\| \text{ Pour } (a, b) \in \mathbb{R}^2, \ |a + \mathbf{i}.b| = \sqrt{a^2 + b^2}$$

Propriété 6 : Interprétation géométrique

$$\left| \begin{array}{ll} \mathrm{Si}\ M(z),\,\mathrm{alors} & |z| = OM \\ \\ \mathrm{Si}\ \vec{u}(z)\,\,\mathrm{alors} & |z| = \|\vec{u}\| \\ \\ \mathrm{Si}\ A(a)\ \mathrm{et}\ B(b)\ \mathrm{alors} & |b-a| = AB = \|\overrightarrow{AB}\| \end{array} \right|$$

Propriété 7 : compatibilité avec les opérations

Attention : marche pas bien avec somme et différence

Propriété 8 : Inverse

Si
$$z \neq 0$$
 alors $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$

Propriété 9 : Double inégalité triangulaire

$$\|\forall (z, z') \in \mathbb{C}^2, \quad ||z| - |z'|| \le |z + z'| \le |z| + |z'|$$

Propriété 10 : Cas d'égalité

$$\begin{vmatrix} |z+z'| = |z| + |z'| \\ \iff z' = 0 \text{ ou } z' = \alpha.z \text{ avec } \alpha \text{ \underline{r\'eel positif}}$$

Interprétation géométrique

<u>Démonstration</u>

- 1) Montrons d'abord $|z + z'| \le |z| + |z'|$
 - § Procédons par équivalence : Le deux termes de l'inégalité sont positifs, donc

$$|z + z'| \le |z| + |z'|$$

 $\iff |z + z'|^2 \le (|z| + |z'|)^2$

$$\iff (z+z')(\overline{z+z'}) \le |z|^2 + 2|z||z'| + |z'|^2$$

$$\iff (z+z')(\overline{z}+\overline{z'}) \le |z|^2 + 2|z||z'| + |z'|^2$$

$$\iff z\overline{z} + z\overline{z'} + z'\overline{z} + z'\overline{z'} \le z\overline{z} + 2|z||z'| + z'\overline{z'}$$

$$\iff z\overline{z'} + z'\overline{z} \le 2|z||z'|$$

$$\iff z\overline{z'} + z\overline{z'} \le 2|z||\overline{z'}|$$

$$\iff 2.\operatorname{Re}(z\overline{z'}) \le 2|z\overline{z'}|$$

$$\iff \operatorname{Re}(z\overline{z'}) \le |z\overline{z'}|$$

- § Posons $Z=z\overline{z'}=a+\mathbf{i}b$ avec $a,b\in\mathbb{R}$ et montrons que $\operatorname{Re}(Z)\leq |Z|$ On a $|Z|=\sqrt{a^2+b^2}\geq \sqrt{a^2}=|a|$ et $|a|\geq a$ D'où $|Z|\geq \operatorname{Re}(Z)$ Et donc $\operatorname{Re}(z\overline{z'})\leq |z\overline{z'}|$ Ce qui prouve l'inégalité
- 2) Profitons-en pour déterminer le cas d'égalité : $|z+z'| \le |z| + |z'|$ D'après ce qui précède :

$$|z + z'| = |z| + |z'|$$

$$\iff |Z| = \operatorname{Re}(Z)$$

$$\iff \sqrt{a^2 + b^2} = \sqrt{a^2} \text{ et } |a| = a$$

$$\iff b = 0 \text{ et } a \ge 0$$

$$\Rightarrow z\overline{z'} = a \in \mathbb{R}^+$$

- Premier cas : z' = 0
- Deuxième cas : $z' \neq 0$

Alors
$$z\overline{z'} = a$$

$$\Rightarrow z = \frac{a}{\overline{z'}} = \frac{a \cdot z'}{\overline{z'} \cdot z'} = \frac{a}{|z'|^2} z' = \alpha \cdot z' \text{ avec } \alpha = \frac{a}{|z'|^2} \ge 0$$

(Remarque : on a raisonné par **implication**. Il faut donc vérifier la **réciproque** :

• Premier cas : z' = 0. alors trivialement |z + z'| = |z| = |z| + |z'| • Deuxième cas : $z = \alpha.z'$ avec $\alpha \in \mathbb{R}^+$

$$|z + z'| = |\alpha z' + z'| = |(\alpha + 1)z'| = (\alpha + 1)|z'| \quad \text{car } 1 + \alpha \ge 0$$
$$= \alpha|z'| + |z'| = |\alpha z'| + |z'| \quad \text{car} \quad \alpha \ge 0$$
$$= |z| + |z'|$$

Dans les deux cas cela marche.

3) Il reste à montrer l'inégalité de gauche : $|z| - |z'| \le |z + z'|$

$$|z| - |z'|$$
 et $|z + z'|$ sont deux réels

Or, pour $A \in \mathbb{R}$ et $B \geq 0$

$$\iff \max(A, -A) \le B$$

$$\iff$$
 $A < B$ et $-A < B$

Donc

$$||z| - |z'|| \le |z + z'|$$

$$\iff$$
 $|z| - |z'| \le |z + z'|$ et $|z'| - |z| \le |z + z'|$

$$\iff$$
 $|z| < |z + z'| + |z'|$ et $|z'| < |z + z'| + |z|$

Or

$$|z| = |(z+z') + (-z')| \le |z+z'| + |-z'| \quad \text{(inégalité triangulaire)}$$
 $\Rightarrow |z| \le |z+z'| + |z'| \quad \text{car} \quad |-z'| = |z'|$

Cette inégalité est vraie pour tous $z, z' \in C$

On peut donc échanger z et z':

$$|z'| \le |z + z'| + |z|$$

On a bien obtenu les deux inégalités voulues. CQFD

4 Nombre complexes de module 1

Définition 5 : ensemble des complexe de module 1

On note
$$\mathbb{U} = \{ z \in \mathbb{C}, |z| = 1 \}$$

Propriété 11 :Angle

A tout point du cercle \mathbb{U} correspond un angle θ , défini modulo 2π , tel que $M(\cos(\theta), \sin(\theta))$

Propriété 12 : Argument

Tout nombre complexe de \mathbb{U} s'écrit $z = \cos(\theta) + \mathbf{i} \cdot \sin(\theta)$ où θ est appelé **un argument** de z et est noté $\arg(z)$

Définition 6 notation exponentielle

Pour tout $\theta \in \mathbb{R}$, on note $e^{i\theta} = \cos(\theta) + i \cdot \sin(\theta)$

Propriété 13 opérations

- $e^{i.0} = 1$ $e^{i.\pi} = -1$ $e^{i.\pi/2} = i$
- $e^{i\theta} = e^{-i\theta}$ $|e^{i\theta}| = 1$
- $\bullet e^{\mathbf{i}(\theta_1 + \theta_2)} = e^{\mathbf{i}\theta_1} e^{\mathbf{i}\theta_2} \qquad e^{-\mathbf{i}\theta} = \frac{1}{e^{\mathbf{i}\theta}}$

$$e^{\mathbf{i}(\theta_1 - \theta_2)} = \frac{e^{\mathbf{i}\theta_1}}{e^{\mathbf{i}\theta_2}} \qquad \forall n \in \mathbb{Z}, e^{\mathbf{i}n\theta} = [e^{\mathbf{i}\theta}]^n$$

<u>Démonstration</u> Les premières propriétés sont triviales

- Montrons que $e^{\mathbf{i}x} \cdot e^{\mathbf{i}y} = e^{\mathbf{i}(x+y)}$ (1) $e^{\mathbf{i}x} \cdot e^{\mathbf{i}y} = (\cos x + \mathbf{i}\sin x)(\cos y + \mathbf{i}\sin y)$ par définition $= \cos x \cos y + \mathbf{i}\sin x \cos y + \mathbf{i}\cos x \sin y + \mathbf{i}^2\sin x \sin y$ $= (\cos x \cos y - \sin x \sin y) + \mathbf{i}(\sin x \cos y + \cos x \sin y)$ $= \cos(x+y) + \mathbf{i}\sin(x+y) = e^{\mathbf{i}(x+y)}$ par définition
- D'après cette propriété on a :

$$e^{i\theta}.e^{-i\theta} = e^{i(\theta-\theta)} = e^{i.0} = 1 \implies e^{-i\theta} = \frac{1}{e^{i\theta}}$$
 (2)

- $\frac{e^{i\theta_1}}{e^{i\theta_2}} = e^{i\theta_1} \frac{1}{e^{i\theta_2}} = e^{i\theta_1} e^{-i\theta_2}$ d'après (2) = $e^{i(\theta_1 - \theta_2)}$ d'après (1)
- Mq $\forall n \in \mathbb{Z}, e^{in\theta} = [e^{i\theta}]^n$

On commence par le démontrer par récurrence sur sur $n \in \mathbb{N}$

- § Initialisation : pour n=0, $e^{in\theta}=e^{i0}=1$ et $[e^{i\theta}]^n=[e^{i\theta}]^0=1$ Vrai pour n=0
- § Hérédité : supposons la relation vraie à un rang $n \in \mathbb{N}$ donné

On a :
$$e^{in\theta} = [e^{i\theta}]^n$$
 (H.R.)
 $e^{i(n+1)\theta} = e^{i(n\theta+\theta)} = e^{in\theta}e^{i\theta}$ d'après (1)
 $= [e^{i\theta}]^n e^{i\theta}$ d'après **H.R**
 $= [e^{i\theta}]^{n+1}$ La relation est vraie au rang $n+1$

 δ Conclusion $\forall n \in \mathbb{N}, \ e^{in\theta} = [e^{i\theta}]^n$ (3)

Il reste à la démontrer pour n < 0:

Soit $n \in \mathbb{Z}^-$. On a n = -p avec $p \in \mathbb{N}$. Donc

$$e^{in\theta} = e^{-ip\theta} = \frac{1}{e^{ip\theta}} \quad \text{d'après (2)}$$

$$= \frac{1}{[e^{i\theta}]^p} \quad \text{d'après (3)} \quad \text{car } p \in \mathbb{N}$$

$$= [e^{i\theta}]^{-p} = [e^{i\theta}]^n$$

Conclusion: La relation est vraie pour tout $n \in \mathbb{Z}$ CQFD

4.1 Formules d'Euler

Propriété 14

$$\cos(x) = \frac{e^{\mathbf{i}x} + e^{-\mathbf{i}x}}{2}, \qquad \sin(x) = \frac{e^{\mathbf{i}x} - e^{-\mathbf{i}x}}{2\mathbf{i}}$$

ou encore

Propriété 15

$$\|\cos(x) = \operatorname{Re}(e^{\mathbf{i}x}) \qquad \sin(x) = \operatorname{Im}(e^{\mathbf{i}x})$$

Démonstration En effet, $e^{ix} = \cos x + i \sin x$

$$\Rightarrow \cos x = \operatorname{Re}(e^{\mathbf{i}x}) = \frac{e^{\mathbf{i}x} + \overline{e^{\mathbf{i}x}}}{2} = \frac{e^{\mathbf{i}x} + e^{-\mathbf{i}x}}{2}$$

Et
$$\sin x = \operatorname{Im}(e^{ix}) = \frac{e^{ix} - \overline{e^{ix}}}{2i} = \frac{e^{ix} - e^{-ix}}{2i}$$
 CQFD

Applications:

- $\sum_{i=1}^{n} \cos(kx)$ $e^{ia} + e^{ib}$ $1 e^{-ia}$ etc.
- Linéarisation : $\cos^3 x \cdot \sin x$

Solutions

 $\bullet | e^{\mathbf{i}a} + e^{\mathbf{i}b}$

On met en facteur « l'angle moitié ». Ici c'est $e^{i\frac{a+b}{2}}$

Méthode bourrin (mais efficace):

$$e^{\mathbf{i}a} + e^{\mathbf{i}b} = e^{\mathbf{i}\frac{a+b}{2}} \frac{e^{\mathbf{i}a} + e^{\mathbf{i}b}}{e^{\mathbf{i}\frac{a+b}{2}}}$$

$$= e^{\mathbf{i}\frac{a+b}{2}} \left(\frac{e^{\mathbf{i}a}}{e^{\mathbf{i}\frac{a+b}{2}}} + \frac{e^{\mathbf{i}b}}{e^{\mathbf{i}\frac{a+b}{2}}} \right)$$

$$= e^{\mathbf{i}\frac{a+b}{2}} \left(e^{\mathbf{i}a - \mathbf{i}\frac{a+b}{2}} + e^{\mathbf{i}b - \mathbf{i}\frac{a+b}{2}} \right)$$

$$= e^{\mathbf{i}\frac{a+b}{2}} \left(e^{\mathbf{i}\frac{a-b}{2}} + e^{\mathbf{i}\frac{-a+b}{2}} \right)$$

$$= e^{\mathbf{i}\frac{a+b}{2}} . 2\cos\left(\frac{a-b}{2}\right)$$

Remarque : la factorisation peut se faire « à la volée » en sautant les trois premières étapes.

• $1 - e^{-ia}$ On met en facteur l'angle moitié, ici -a/2

$$1 - e^{-ia} = e^{-ia/2} (e^{+ia/2} - e^{-ia/2}) = e^{-ia/2}.2i.\sin(a/2)$$

$$\bullet \ \ \, C_n = \sum_{k=0}^n \cos(kx)$$

On associe la somme des sinus : $S_n = \sum \sin(kx)$

$$C_n = \operatorname{Re}(\sigma_n)$$
 avec

$$\sigma_n = C_n + \mathbf{i}S_n = \sum_{k=0}^n \cos(kx) + \mathbf{i}\sum_{k=0}^n \sin(kx)$$

$$= \sum_{k=0}^{n} (\cos(kx) + \mathbf{i}\sin(kx)) = \sum_{k=0}^{n} e^{\mathbf{i} \cdot kx} = \sum_{k=0}^{n} (e^{\mathbf{i} \cdot x})^{k}$$

Somme des termes d'une suite géométrique de raison e^{ix}

§ 1er cas:
$$e^{i.x} = 1 \iff x = 2k\pi \text{ avec } k \in \mathbb{Z}$$

Alors
$$\sigma_n = \sum_{k=0}^n 1^k = n+1$$

$$\Rightarrow$$
 $C_n = \operatorname{Re}(\sigma_n) = n + 1$

§
$$2^{\text{ème}}$$
 cas: $e^{\mathbf{i}.x} \neq 1 \iff x \neq 2k\pi \text{ avec } k \in \mathbb{Z}$

Alors

$$\sigma_n = \sum_{k=0}^n (e^{\mathbf{i}.x})^k = \frac{1 - (e^{\mathbf{i}.x})^{n+1}}{1 - e^{\mathbf{i}.x}} = \frac{1 - e^{\mathbf{i}.(n+1)x}}{1 - e^{\mathbf{i}.x}}$$

$$= \frac{e^{\mathbf{i}.(n+1)x/2}}{e^{\mathbf{i}.x/2}} \cdot \frac{e^{-\mathbf{i}.(n+1)x/2} - e^{\mathbf{i}.(n+1)x/2}}{e^{\mathbf{i}.x/2} - e^{\mathbf{i}.x/2}}$$

$$= e^{\mathbf{i}.nx/2} \cdot \frac{-2\mathbf{i}.\sin\frac{(n+1)x}{2}}{-2\mathbf{i}.\sin\frac{x}{2}} = e^{\mathbf{i}.nx/2} \cdot \frac{\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}}$$

D'où

$$C_n = \operatorname{Re}(\sigma_n) = \frac{\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}} \operatorname{Re}(e^{\mathbf{i} \cdot nx/2}) = \frac{\sin\frac{(n+1)x}{2}}{\sin(\frac{x}{2})} \cos\frac{n \cdot x}{2}$$

Remarque : Cette méthode donne aussi, sans autre calcul, la valeur de S_n :

Si
$$x = 0$$
 [2 π] $S_n = 0$

Si
$$x \neq 0$$
 $[2\pi]$ $S_n = \frac{\sin\frac{(n+1)x}{2}}{\sin(\frac{x}{2})}\sin\frac{n \cdot x}{2}$

• Linéarisation : $\cos^3 x \cdot \sin x$

$$\cos^3 x \cdot \sin x$$

$$= \left(\frac{e^{\mathbf{i}x} + e^{-\mathbf{i}x}}{2}\right)^3 \left(\frac{e^{\mathbf{i}x} - e^{-\mathbf{i}x}}{2\mathbf{i}}\right)$$

$$= \frac{1}{16\mathbf{i}} \left(e^{\mathbf{i}x} + e^{-\mathbf{i}x} \right)^3 \left(e^{\mathbf{i}x} - e^{-\mathbf{i}x} \right)$$

$$= \frac{1}{16\mathbf{i}} \left((e^{\mathbf{i}x})^3 + 3(e^{\mathbf{i}x})^2 (e^{-\mathbf{i}x}) + 3(e^{\mathbf{i}x})(e^{-\mathbf{i}x})^2 + (e^{-\mathbf{i}x})^3 \right) \left(e^{\mathbf{i}x} - e^{-\mathbf{i}x} \right)$$
(binôme de Newton)
$$= \frac{1}{16\mathbf{i}} \left(e^{3\mathbf{i}x} + 3e^{\mathbf{i}x} + 3e^{-\mathbf{i}x} + e^{-3\mathbf{i}x} \right) \left(e^{\mathbf{i}x} - e^{-\mathbf{i}x} \right)$$

$$= \frac{1}{16\mathbf{i}} \left(e^{4\mathbf{i}x} + 3e^{2\mathbf{i}x} + 3e^{0x} + e^{-2\mathbf{i}x} - e^{-4\mathbf{i}x} \right)$$

$$= \frac{1}{16\mathbf{i}} \left(e^{4\mathbf{i}x} + 2e^{2\mathbf{i}x} - 3e^{0x} - 3e^{-2\mathbf{i}x} - e^{-4\mathbf{i}x} \right)$$

$$= \frac{1}{16\mathbf{i}} \left((e^{4\mathbf{i}x} - e^{-4\mathbf{i}x}) + 2(e^{2\mathbf{i}x} - e^{-2\mathbf{i}x}) \right)$$

$$= \frac{1}{16\mathbf{i}} \left(2.\mathbf{i} \sin 4x + 4\mathbf{i} \cdot \sin 2x \right)$$

$$= \frac{1}{8} (\sin 4x + 2\sin 2x)$$

Vérifications :

- Pour $x = \pi/4$, $\cos^3(x) \sin(x) = (\sqrt{2}/2)^3 (\sqrt{2}/2) = 1/4$ $(\sin 4x + 2\sin 2x)/8 = (\sin \pi + 2\sin \pi/2)/8 = 2/8$
- Pour $x = \pi/3$ $\cos^3(x) \sin(x) = (1/2)^3(\sqrt{3}/2) = \sqrt{3}/16$ $(\sin 4x + 2\sin 2x)/8 = (\sin 4\pi/3 + 2\sin 2\pi/3)/8$ $= (-\sqrt{3}/2 + 2\sqrt{3}/2)/8 = (\sqrt{3}/2)/8$

Ca a l'air de tenir la route

4.2 Formule de Moivre

Propriété 16

$$\|(\cos\theta + \mathbf{i}.\sin\theta)^n = \cos(n\theta) + \mathbf{i}.\sin(n\theta)$$

Application: Calcul de $\cos(3x)$, $\sin(3x)$ en fonction $\sin x$, $\cos x$ Solution:

$$\cos(3x) + \mathbf{i} \cdot \sin(3x) = e^{3\mathbf{i}x}$$

$$= (\cos x + \mathbf{i} \sin x)^3$$

$$= (\cos x)^3 + 3(\cos x)^2(\mathbf{i} \sin x) + 3(\cos x)(\mathbf{i} \sin x)^2 + (\mathbf{i} \sin x)^3$$

$$= \cos^3 x + \mathbf{i} \cdot 3\cos^2 x \sin x - 3\cos x \sin^2 x - \mathbf{i} \cdot \sin^3 x$$

$$\Rightarrow \cos(3x) = \text{Re}(e^{3\mathbf{i}x}) = \cos^3 x - 3\cos x \sin^2 x$$
et
$$\sin(3x) = \text{Im}(e^{3\mathbf{i}x}) = 3\cos^2 x \sin x - \sin^3 x$$

Argument

Propriété 17

 $\| \text{ Soit } z \in \mathbb{C}^*. \text{ alors } z/|z| \in \mathbb{U}$

En effet, $\left| \frac{z}{|z|} \right| = \frac{|z|}{|z|} = 1$

Définition 7 : Argument

Soit $z \neq 0$, il existe $\theta \in \mathbb{R}$, $z = |z|e^{i\theta}$ θ est appelé un argument de z et on note $\theta = arq(z)$ [2 π]

Attention : un argument est toujours défini modulo 2π

Propriété 18 : Valeurs particulières

Propriété 19 : opérations

- $\arg(z_1.z_2) = \arg(z_1) + \arg(z_2)$ [2 π]
- arg(1/z) = -arg(z) [2 π]
- $\arg(z_1/z_2) = \arg(z_1) \arg(z_2)$
- $\bullet \arg(z^n) = n \cdot \arg(z) \quad [2\pi]$
- $\arg(\overline{z}) = -\arg(z)$ $[2\pi]$
- $\bullet \arg(a.z) = \begin{cases} \arg(z) & [2\pi] & \text{si } a > 0 \\ \arg(z) + \pi & [2\pi] & \text{si } a < 0 \end{cases}$

$$arg(-z) = ?$$

Définition 8 : forme exponentielle

Tout complexe $z \neq 0$ peut s'écrire sous la forme exponentielle :

$$z = re^{i\theta}$$
 où $r = |z|$ et $\theta = \arg(z)$ $[2\pi]$

Propriété 20 : Égalité par module et argument

Soient z_1, z_2 deux complexes non nuls

$$z_1 = z_2 \quad \Longleftrightarrow \quad \begin{cases} |z_1| = |z_2| \\ \arg(z_1) = \arg(z_2) \quad [2\pi] \end{cases}$$

Exponentielle complexe

Définition 10 : Exponentielle complexe

Pour
$$(a, b) \in \mathbb{R}^2$$
, $e^{a+i.b} = e^a e^{ib} = e^a (\cos(b) + i.\sin(b))$
ou encore : Pour $z \in \mathbb{C}$,
 $e^z = e^{\operatorname{Re}(z)} e^{i.\operatorname{Im}(z)} = e^{\operatorname{Re}(z)} (\cos(\operatorname{Im}(z)) + i.\sin(\operatorname{Im}(z)))$

Remarque: pour en arriver là, on a procédé par étapes successives:

- La fonction exponentielle est déjà connue sur R
- Sur **i**. \mathbb{R} , on a défini $e^{i\theta}$
- Enfin, on définit maintenant l'exponentielle sur C tout entier

Propriété 22 : Opérations

$$\begin{vmatrix} e^{z+z'} = e^z e^{z'} & e^{-z} = \frac{1}{e^z} & e^{z-z'} = \frac{e^z}{e^{z'}} & e^{n.z} = (e^z)^n, n \in \mathbb{Z} \\ \overline{e^z} = e^{\overline{z}} & |e^z| = e^{\operatorname{Re}(z)} & \arg(e^z) = \operatorname{Im}(z) & [2\pi] \end{vmatrix}$$

Démonstration Par exemple : pour $z = a + \mathbf{i}.b$ avec $a, b \in \mathbb{R}^2$ $\overline{Q^z} = \overline{Q^a + i.b} = \overline{Q^a} \overline{Q^i.b} = \overline{Q^a} \overline{Q^i.b} = Q^a \overline{Q^i.b} = Q^a$

Propriété 23 : Égalité

$$e^{z} = e^{z'}$$

$$\iff z' - z = \mathbf{i}.2k\pi \text{ avec } k \in \mathbb{Z}$$

$$\iff \begin{cases} \operatorname{Re}(z) = \operatorname{Re}(z') \\ \operatorname{Im}(z) = \operatorname{Im}(z') \end{cases} [2\pi]$$

Démonstration

$$e^z = e^{z'}$$

$$\iff$$
 $|e^z| = |e^{z'}|$ et $\arg(e^z) = \arg(e^{z'}) + 2k\pi$

$$\iff$$
 $e^{\operatorname{Re}(z')} = e^{\operatorname{Re}(z)}$ et $\operatorname{Im}(z') = \operatorname{Im}(z) + 2k\pi$

$$\iff \begin{cases} \operatorname{Re}(z) = \operatorname{Re}(z') \\ \operatorname{Im}(z) = \operatorname{Im}(z') \\ \Leftrightarrow z' = z + \mathbf{i}.2k\pi \text{ avec } k \in \mathbb{Z} \end{cases}$$

$$\iff$$
 $z' = z + \mathbf{i}.2k\pi$ avec $k \in \mathbb{Z}$

Propriété 24 : Équation $e^z = a, a \in \mathbb{C}$

|| L'équation $e^z = a$ d'inconnue $z \in \mathbb{C}$

- Si a = 0, n'admet pas de solution Si $a \neq 0$, admet une infinité de solutions de la forme $z = \ln(|a|) + \mathbf{i}(\arg(a) + 2k\pi)$ avec $k \in \mathbb{Z}$

Démonstration

- $|e^z| = e^{Re(z')} > 0$ Donc $e^z = 0$ est impossible
- Pour $a \in \mathbb{C}^*$ $e^z = a$ $|e^z| = |a|$ et $\arg(e^z) = \arg(a) + 2k\pi$

$$\iff e^{\operatorname{Re}(z)} = |a| \quad \text{et} \quad \operatorname{Im}(z) = \operatorname{arg}(a) + 2k\pi$$

$$\iff \begin{cases} \operatorname{Re}(z) = \ln|a| \\ \operatorname{Im}(z) = \operatorname{arg}(a) \quad [2\pi] \end{cases}$$

$$\iff z = \ln(|a|) + \mathbf{i}(\operatorname{arg}(a) + 2k\pi) \quad \text{avec } k \in \mathbb{Z}$$

Second degré

Équation du second degré

Propriété 25 : Solutions des équations du second degré

Soit l'équation $Q(z) = az^2 + bz + c = 0$ d'inconnue $z \in \mathbb{C}$ avec $a \in \mathbb{C}^*, (b, c) \in \mathbb{C}^2$

On note $\Delta = b^2 - 4ac = \delta^2$ le discriminant de cette équation

- Si $\Delta = 0$, l'équation possède une racine double $z_0 = \frac{-b}{2a}$ et $Q(z) = a(z - z_0)^2$
- Si $\Delta \neq 0$, l'équation admet deux racines distinctes $z_1 = \frac{-b+\delta}{2a}$ $z_2 = \frac{-b-\delta}{2a}$ Et $Q(z) = a(z - z_1)(z - z_2)$

Démonstration

On met le polynôme sous forme canonique :

$$Q(z) = az^{2} + bz + c$$
$$= a\left[z^{2} + \frac{b}{a}z + \frac{c}{a}\right]$$

On veut faire apparaître le début d'un carré : $\left(z + \frac{b}{2a}\right)^2$

$$Q(z) = a \left[z^2 + 2\frac{b}{2a}z + \frac{c}{a} \right]$$
$$= a \left[z^2 + 2\frac{b}{2a}z + \frac{b^2}{4a^2} - \frac{b^2}{4a^2} + \frac{c}{a} \right]$$

$$= a \left[\left(z + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right]$$

$$= a \left[\left(z + \frac{b}{2a} \right)^2 - \frac{\delta^2}{4a^2} \right] \quad \text{avec} \quad \delta^2 = \Delta = b^2 - 4ac$$

$$= a \left[\left(z + \frac{b}{2a} \right)^2 - \left(\frac{\delta}{2a} \right)^2 \right]$$

$$= a \left(z + \frac{b}{2a} - \frac{\delta}{2a} \right) \left(z + \frac{b}{2a} + \frac{\delta}{2a} \right)$$

$$= a \left(z - \frac{-b + \delta}{2a} \right) \left(z - \frac{-b - \delta}{2a} \right)$$

$$= a \left(z - z_1 \right) \left(z - z_2 \right)$$

$$= b + \delta \qquad -b - \delta$$

avec $z_1 = \frac{-b+\delta}{2a}$ et $z_2 = \frac{-b-\delta}{2a}$ qui sont les deux racines de Q

Dans le cas où $\Delta = 0$,

les deux racines sont égales à $z_0 = \frac{-b}{2a}$ et Q(z) = $a(z-z_0)^2$ CQFD

Propriété 26 : Produit et somme des racines

Si z_1 et z_2 sont les racines du polynômes $Q(z) = az^2 + bz + c = 0$ (avec $z_1 = z_2$ dans le cas de la racine double), alors $P = z_1 z_2 = \frac{c}{a}$, $S = z_1 + z_2 = \frac{-b}{a}$

Démonstration

On revient à la forme factorisée :

$$Q(z) = a(z - z_1)(z - z_2) = a(z^2 - z_1z - z_2z + z_1z_2)$$

= $az^2 - a(z_1 + z_2)z + az_1z_2$

Par identification avec $Q(z) = az^2 + bz + c$

On a $-a(z_1+z_2)=b$ et $az_1z_2=c$ Ce qui donne les formules voulues.

Propriété 27 : Solutions des sommes et produits

Les solutions du système $\begin{cases} z_1 z_2 = P \\ z_1 + z_2 = S \end{cases}$ sont les couples (z_1, z_2) solutions de l'équation $z^2 - sz + p = 0$

Démonstration

 (z_1, z_2) sont les solutions de l'équation $(z-z_1)(z-z_2)=0$ avec $(z-z_1)(z-z_2) = z^2 - (z_1+z_2) \cdot z + z_1 \cdot z_2 = z^2 - s \cdot z + p$ Donc (z_1, z_2) sont les solutions de l'équation $z^2 - s \cdot z + p = 0$

Racines carrées d'un complexe

Soit $z = a + \mathbf{i}.b$ On cherche $\delta = x + \mathbf{i}.y$ tel que $\delta^2 = z$ \iff $a + \mathbf{i}.b = (x^2 - y^2) + \mathbf{i}.2xy$ $\iff \begin{cases} x^2 - y^2 = a & (1) \\ 2xy = b & (2) \end{cases}$

De plus:
$$|z| = |\delta|^2 \iff x^2 + y^2 = |z| = \sqrt{a^2 + b^2}$$
 (3)

En faisant (1) + (3) on obtient x^2 et donc les deux valeurs opposées de x. Pour chacune de ces deux solutions, on obtient y en utilisant l'équation (2). Cela donne les solutions δ_1 et $\delta_2 = -\delta_1$

Exemples: Trouver les racines carrées de $2 + \mathbf{i}$ puis de $1 - 3\mathbf{i}$

Cherchons $\delta = x + \mathbf{i} \cdot y$ tel que $\delta^2 = 2 + \mathbf{i}$ \iff $(x+\mathbf{i}.y)^2 = 2+\mathbf{i}$ \iff $x^2 - y^2 + \mathbf{i}.2xy = 2+\mathbf{i}$ $\iff \begin{cases} x^2 - y^2 = 2 & (1) \\ 2xy = 1 & (2) \end{cases}$

D'autre part $(x+\mathbf{i}.y)^2 = 2+\mathbf{i} \Rightarrow |x+\mathbf{i}.y|^2 = |2+\mathbf{i}|$ \iff $x^2 + y^2 = \sqrt{5}$ (3)

$$(1)+(3) \Rightarrow 2x^2 = 2 + \sqrt{5} \Rightarrow x^2 = \frac{4+2\sqrt{5}}{4}$$

$$\Rightarrow x = \frac{+\sqrt{4+2\sqrt{5}}}{2} \text{ ou } x = \frac{-\sqrt{4+2\sqrt{5}}}{2}$$

(3)-(1)
$$\Rightarrow$$
 $2y^2 = \sqrt{5} - 2 \Rightarrow y^2 = \frac{2\sqrt{5} - 4}{4}$

$$\Rightarrow y = \frac{+\sqrt{2\sqrt{5}-4}}{2}$$
 ou $y = \frac{-\sqrt{2\sqrt{5}}-4}{2}$

Enfin, (2)
$$\Rightarrow$$
 $2xy = 1$ \Rightarrow $xy > 0$

Donc les seules solutions possibles sont :

$$\delta_1 = \frac{+\sqrt{4+2\sqrt{5}}}{2} + i \frac{+\sqrt{2\sqrt{5}-4}}{2}$$
 et $\delta_2 = -\delta_1$

8 Racines nèmes

Définition 11 : Racines $n^{i \text{èmes}}$

Soient $n \in \mathbb{N}^*$ et $Z \in \mathbb{C}^*$

z est une racine $n^{\text{ème}}$ de Z si et seulement si $z^n = Z$

z est une racine $n^{\text{ème}}$ de l'unité si et seulement si $z^n = 1$

On notera \mathbb{U}_n l'ensemble des racines $n^{\mathrm{\`e}mes}$ de l'unité

Propriété 28 : Racines nêmes de l'unité

| L'équation $z^n=1$ admet n solutions distinctes dans $\mathbb C$ qui sont de la forme

$$z_k = e^{\mathbf{i}\frac{2k\pi}{n}} \quad \text{avec} \quad k \in \{0, 1, \dots, n-1\} \quad (\text{ou } k \in \{1, \dots, n\})$$
On a donc
$$\mathbb{U}_n = \left\{ e^{\mathbf{i}\frac{2k\pi}{n}} / k \in [[0, n-1]] \right\}$$

$\underline{D\acute{e}monstration}$

$$z^{n} = 1 \quad \iff \quad \begin{cases} |z^{n}| = |1| \\ \arg(z^{n}) = \arg(1) \quad [2\pi] \end{cases}$$

D'une part,

$$|z^n| = |1| \iff |z|^n = 1 \iff |z| = 1 \text{ car on est dans } \mathbb{R}^+$$

D'autre part

$$\arg(z^n) = \arg(1) \quad [2\pi]$$

$$\iff$$
 $n \arg(z) = 0 + 2k\pi$

$$\iff$$
 $\arg z = \frac{2k\pi}{n}$ avec $k \in \mathbb{Z}$

Donc

$$z^{n} = 1$$

$$\iff \begin{cases} |z| = 1 \\ \arg z = \frac{2k\pi}{n} \end{cases}$$

$$\iff$$
 $z = z_k$ avec $z_k = e^{i\frac{2k\pi}{n}}, k \in \mathbb{Z}$

Enfin, pour k = n, on retrouve $z_n = z_0$

Il suffit donc de prendre les valeurs de k dans[[0; n-1]], ce qui donne bien n racines distinctes.

Propriété 29

| Les racines de l'unité s'écrivent aussi

$$z_k = (\omega)^k$$
 avec $\omega = e^{i\frac{2\pi}{n}} = z_1$

Propriété 30 : Racine nièmes de z

Soit
$$Z = Re^{i\theta} \neq 0$$
 (avec $R > 0$)

Alors l'équation $z^n = Z$ admet n solutions distinctes qui s'écrivent

$$z_k = R^{1/n} e^{i\frac{\theta + 2k\pi}{n}}$$
 avec $k \in \{0, 1, \dots, n-1\}$
= $R^{1/n} e^{i\theta/n} \omega^k$ avec $\omega = e^{i2\pi/n}$

Démonstration $z^n = Re^{i\theta} = Z$

$$\iff \begin{cases} |z^n| = |Z| \\ \arg(z^n) = \arg(Z) \quad [2\pi] \end{cases}$$

D'une part,

$$|z^n|=|Z|$$
 \iff $|z|^n=R$ \iff $|z|=\sqrt[n]{R}=R^{1/n}$ car on est dans \mathbb{R}^+

D'autre part

$$arg(z^n) = arg(Z)$$
 [2 π]

$$\iff$$
 $n \arg(z) = \theta + 2k\pi$

$$\iff$$
 $\arg z = \frac{\theta + 2k\pi}{n}$ avec $k \in \mathbb{Z}$

Donc

$$z^{n} = 1$$

$$\iff \begin{cases} |z| = R^{1/n} \\ \arg z = \frac{\theta + 2k\pi}{n} \end{cases}$$

$$\iff z = z_{k} \text{ avec}$$

$$z_{k} = R^{1/n} e^{i\frac{\theta + 2k\pi}{n}}, k \in \mathbb{Z}$$

$$= R^{1/n} e^{i\frac{\theta}{n}} e^{i\frac{2k\pi}{n}}$$

$$= R^{1/n} e^{i\theta/n} \omega^{k} \text{ avec} \qquad \omega = e^{i2\pi/n}$$

9 Géométrie

9.1 Interprétations géométriques

- $z(\overrightarrow{AB}) = z_B z_A$
- $|z_M| = OM = \|\overrightarrow{OM}\|$
- $|z_B z_A| = AB = \|\overrightarrow{AB}\|$
- $\arg(z_u) = (\vec{i}, \ \vec{u}) \quad [2\pi]$
- $(\vec{u}, \vec{v}) = (\vec{i}, \vec{v}) (\vec{i}, \vec{u}) = \arg(z_v) \arg(z_u) = \arg\frac{z_v}{z_u}$ [2 π]
- $(\overrightarrow{AB}, \overrightarrow{AC}) = \arg\left(\frac{z(\overrightarrow{AC})}{z(\overrightarrow{AB})}\right) = \arg\left(\frac{z_C z_A}{z_B z_A}\right)$ [2 π]

9.2 propriétés géométriques (non exhaustives)

• Cercle de centre $A(z_A)$ et rayon r > 0:

$$M(z) \in C(A, r) \iff AM = r$$

$$\iff |z - z_A| = r \iff (z - z_A)(\overline{z} - \overline{z_A}) = r^2$$

• Colinéarité : Pour $u \neq 0$, $v \neq 0$ u, v colinéaires

$$\iff u = kv \text{ avec } k \in \mathbb{R}^*$$

$$\iff \frac{\overline{z_v}}{z_v} \in \mathbb{R}^* \iff \frac{\overline{z_v}}{z_v} = \frac{z_v}{z_v} \iff \arg \frac{z_v}{z_v} = 0 \quad [\pi]$$

• Alignement : Pour A, B, C distincts,

$$A, B, C$$
 alignés \iff $\overrightarrow{AB}, \overrightarrow{AC}$ colinéaires

$$\iff \frac{z(\overrightarrow{AB})}{z(\overrightarrow{AC})} \in \mathbb{R} \iff \frac{z_B - z_A}{z_C - z_A} = \frac{\overline{z_B} - \overline{z_A}}{\overline{z_C} - \overline{z_A}}$$

• perpendicularité :

$$\vec{u} \perp \vec{v} \iff (\vec{u}, \vec{v}) = \frac{\pi}{2} \quad [\pi] \iff \arg \frac{z_v}{z_u} = \pi/2 \quad [\pi]$$

$$\iff \frac{z_v}{z_u} \in \mathbf{i}.\mathbb{R} \iff \frac{\overline{z_v}}{\overline{z_u}} + \frac{z_v}{z_u} = 0$$