Définition 1 : Racines $n^{i \text{\`e}mes}$

Soient $n \in \mathbb{N}^*$ et $Z \in \mathbb{C}^*$ z est une racine $n^{\text{ème}}$ de Z si et seulement si $z^n = Z$ z est une racine $n^{\text{ème}}$ de l'unité si et seulement si $z^n=1$ On notera \mathbb{U}_n l'ensemble des racines $n^{\mathrm{\`e}\mathrm{mes}}$ de l'unité

Exercice 1 (Racines de l'unité)

- 1) Soit z une racine 3^{ème} de l'unité.
 - a) Déterminer |z|
 - b) Déterminer les différents arguments possibles de z Combien y-a-til de valeurs distinctes de z?
 - c) Écrire ces différentes solutions sous forme exponentielle
- 2) Soit z une racine $n^{\text{ème}}$ de l'unité.
 - a) Déterminer les différents arguments possibles de z Combien v-a-til de valeurs distinctes de z?
 - b) Écrire ces différentes solutions sous forme exponentielle
 - c) Montrer qu'on peut écrire ces solutions z_k sous la forme $z_k = \omega^k$ en déterminant ω sous forme exponentielle.
- 3) Application: Déterminez les formes exponentielles et les formes algébriques de racines $n^{\text{ème}}$ de l'unité pour n=2, n=3, n=4, n=6Dans chaque cas, représenter ces racines dans le plan

Exercice 2 (Racines $n^{\text{èmes}}$)

- 1) Soit $Z = Re^{i\theta}$ avec R > 0.
 - a) Déterminer les racines $n^{\text{ème}}$ de Z sous la forme $z = \rho e^{i\alpha}$ Combien de racines distinctes?
 - b) Écrire ces différentes racines en utilisant les racines $n^{\text{ème}}$ de l'unité
- 2) Applications
 - a) Calculer les racines $4^{i\text{èmes}}$ de $-72 + 72\sqrt{3}i$.
 - b) Calculer les racines cubiques de $\frac{1+\mathbf{i}}{\sqrt{2}}$ et les mettre sous forme algébrique.

Exercice 3 (Racines de l'unité)

Calculer
$$S_n = \sum_{z \in \mathbb{U}_n} z$$
 et $P_n = \prod_{z \in \mathbb{U}_n} z$

la somme et le produit des racines $n^{\text{èmes}}$ de l'unité

Exercice 4

Calculer les racines carrées des nombres complexes suivants :

a.
$$z_1 = -1 + 2i\sqrt{6}$$
. b. $z_2 = -15 + 8i$.

b.
$$z_2 = -15 + 8\mathbf{i}$$
.

Exercice 5

Résoudre dans \mathbb{C} le système : $\begin{cases} x+y=1+\mathbf{i} \\ xy=2-\mathbf{i} \end{cases}$

Exercice 6 Résoudre dans C les équations suivantes :

a.
$$z^6 - 2z^3 + 2 = 0$$
.

b.
$$z^2 + (3+3i)z - 12 + i = 0$$
.

c.
$$(z+1)^6 + 27(z-1)^6 = 0$$

c.
$$(z+1)^6 + 27(z-1)^6 = 0$$
 d) $(z+\mathbf{i})^n = (z-\mathbf{i})^n$ avec $n \in \mathbb{N}^*$

Exercice 7

Mettre les nombres complexes suivants sous forme exponentielle : a = -3 $b = -2e^{i\pi/5}$ $c = e^{2i\pi/5} + e^{-i\pi/5}$ $d = 1 - e^{i\pi/4}$ $f = 1 + e^{7i\pi/6}$

Exercice 8

- 1) Soient z_1 et z_2 deux nombres complexes qui vérifient $|z_1 a| \le 2$ et $|z_2-a| \leq 3$ où a=-2+i. Faire un dessin représentant la situation. Montrer que $|z_1 - z_2| < 5$
- 2) Soient z_1 et z_2 deux nombres complexes qui vérifient $|z_1-a|\leq 2$ et $|z_2 - b| \le 3$ où $a = -2 + \mathbf{i}$ $b = -2 + 2\mathbf{i}$. Faire un dessin représentant la situation. Montrer que $|z_1 - z_2| \le 6$

Exercice 9

Déterminer l'ensemble des $z \in \mathbb{C}$ qui vérifient $|z-1| = |z-\mathbf{i}|$:

- 1) par un raisonnement purement géométrique;
- 2) par un raisonnement purement algébrique.
- 3) Vérifier qu'on obtient bien le même résultat!