1 Généralités

1.1 Propriétés et transformations graphiques

Soit $f: E \to \mathbb{R}$ définie sur D_f de graphique C_f . On définit les fonctions suivantes :

a) $\forall x \in D_f, \ g(x) = -f(x)$

 C_g est l'image de C_f par la symétrie par rapport à l'axe des abscisses

b) $\forall x \in \mathbb{R}$ tel que $(-x) \in D_f$, g(x) = f(-x)

 C_g est l'image de C_f par la symétrie par rapport à l'axe des ordonnées

c) Soit $a \in \mathbb{R}$, $\forall x \in D_f$, g(x) = f(x) + a

 C_q est l'image de C_f par la translation verticale de vecteur $2\vec{j}$

d) Soit $a \in \mathbb{R}$, $\forall x \in \mathbb{R}$ tel que $x + a \in D_f$, g(x) = f(x + a)

 C_q est l'image de C_f par la translation horizontale de vecteur $-2\vec{i}$

e) Soit $a \in \mathbb{R}$, $\forall x \in D_f$, g(x) = a.f(x)

 C_q est l'image de C_f par la dilatation verticale de rapport a

f) Soit $a \in \mathbb{R}$, $\forall x \in \mathbb{R}$ tel que $a.x \in D_f$, g(x) = f(a.x)

 C_g est l'image de C_f par la dilatation horizontale de rapport 1/a

Définition 1 : Fonction paire

Une fonction f est **paire** sur un ensemble E si et seulement si

- E est centré (c'est-à-dire $\forall x \in E, -x \in E$)
- $\forall x \in E, f(-x) = f(x)$

Dans ce cas C_f , le graphique f est symétrique par rapport à l'axe des ordonnées (Oy)

Définition 2 : Fonction impaire

Une fonction f est **impaire** sur un ensemble E si et seulement si

- E est centré (c'est-à-dire $\forall x \in E, -x \in E$)
- $\forall x \in E, f(-x) = -f(x)$

Dans ce cas C_f , le graphique f est symétrique par rapport au centre O

Définition 3 : Fonction périodique

Soit f définie sur un ensemble E f est de période $T \in \mathbb{R}$ si et seulement si

- $\forall x \in E, x + T \in E$
- $\forall x \in E, \ f(x+T) = f(x)$

1.2 Bornes

Soit $f: A \to \mathbb{R}$ une fonction

Définition 4: Majoration

- f est majorée par $M \in \mathbb{R}$ sur A ssi : $\forall x \in A, \ f(x) \leq M$ M est appelé un majorant de f sur A
- $\bullet \ f$ est majorée sur un ensemble Assi :

$$\exists M \in \mathbb{R}, \ \forall x \in A, \ f(x) \leq M$$

Définition 5: Minoration

- f est minorée par $m \in \mathbb{R}$ sur A ssi : $\forall x \in A, m \leq f(x)$ m est appelé un minorant de f sur A
- ullet f est minorée sur un ensemble A ssi :

$$\exists m \in \mathbb{R}, \ \forall x \in A, \ m \le f(x)$$

Définition 6 : Fonction bornée

f est bornée sur un ensemble A si et seulement si f est majorée et minorée sur A

Propriété 1 : Fonction bornée

f est bornée sur A $\iff \exists K \in \mathbb{R}^+, \ \forall x \in A, \ |f(x)| \leq K.$ $\iff |f|$ est majorée sur A

Démonstration

• Supposons f bornée Alors il existe $(m, M) \in \mathbb{R}^2$ tel que $\forall x \in A, \ m \leq f(x) \leq M$

$$\Rightarrow \begin{cases} f(x) \le M \\ -f(x) \le -m \end{cases} \Rightarrow \begin{cases} f(x) \le \sup(M, -m) \\ -f(x) \le \sup(M, -m) \end{cases}$$
$$\Rightarrow \begin{cases} f(x) \le K \\ -f(x) \le K \end{cases} \text{ avec } K = \sup(M, -m)$$

- $\Rightarrow \sup(f(x), -f(x)) \le K$
- $\Rightarrow \quad |f(x)| \leq K \quad \text{car} \quad |f(x)| = \sup(f(x), -f(x))$

De plus, $|f(x)| \ge 0$ donc $K \ge 0$

Il existe donc bien $K \in \mathbb{R}^+$ tel que : $\forall x \in A, |f(x)| \leq K$ et |f| est bien majorée

- Réciproquement : supposons qu'il existe $K \in \mathbb{R}^+$ tel que
 - $\forall x \in A, |f(x)| \le K$
 - \Rightarrow $-K \le f(x) \le K$ f est bien bornée CQFD

Définition 7: Maximum, minimum

• f admet un maximum global en $x_0 \in A$ ssi

$$\forall x \in A, \ f(x) \le f(x_0)$$

Le maximum de f est donc $f(x_0)$ et il est atteint en x_0

On note
$$f(x_0) = \max_{x \in A} f(x) = \max_A f$$

• f admet un minimum global en $x_0 \in A$ ssi

$$\forall x \in A, \ f(x) > f(x_0)$$

On note
$$f(x_0) = \min_{x \in A} f(x) = \min_{A} f$$

Remarques:

- Si f est majorée, alors elle admet une inifité de majorant. En effet, si f est majorée par M, elle l'est aussi par M+1, M+2, etc.
- $f: \mathbb{R}^+ \to \mathbb{R}^+, x \mapsto 1/x$ est minorée (par 0) mais n'admet pas de minimum
- \bullet S'il existe, le maximum global sur A est unique

Par contre il peut peut être atteint en différents points

Exemple: $f: \mathbb{R} \to \mathbb{R}, x \mapsto \cos x$.

Le maximum de f est 1 et il est atteint en 0, 2π , 4π ...

Définition 8 : Monotonie

- f est croissante sur I $\iff \forall (a,b) \in I^2, \quad a \leq b \quad \Rightarrow \quad f(a) \leq f(b)$
- f est strictement croissante sur I $\iff \forall (x,y) \in I^2, \quad x < y \implies f(x) < f(y)$
- f est décroissante sur I $\iff \forall (a,b) \in I^2, \quad a \leq b \quad \Rightarrow \quad f(a) \geq f(b)$
- f est strictement décroissante sur I $\iff \forall (x,y) \in I^2, \quad x < y \implies f(x) > f(y)$
- f est monotone sur I $\iff f$ est croissante ou décroissante sur I

Exemple: la fonction $x \mapsto 1/x$ est-elle monotone sur \mathbb{R}^* ?

Par contraposée on obtient les propriétés suivantes :

Propriété 2 : Monotonie

- 1) Si f est croissante sur IAlors $\forall (a,b) \in I^2$, $f(a) < f(b) \Rightarrow a < b$
- 2) Si f est est strictement croissante sur IAlors $\forall (a,b) \in I^2, \quad f(a) \leq f(b) \Rightarrow a \leq b$
- 3) Si f est est strictement croissante sur IAlors f est croissante sur IDonc $\forall (a,b) \in I^2, \quad f(a) < f(b) \Rightarrow a < b$

Remarques:

- 1) et 2) sont obtenus par contraposée des défintion.
- 3) est vrai, car f strcitement croissante ilique f croissante (au sesn large), donc 1) s'applique aussi.
- Donc pour une fonction streitement croissante conserve les inégalités streites ou larges dans un sens $(a \le b \Rightarrow f(a) \le f(b))$ et dans l'autre sens $(f(a) \le f(b) \Rightarrow a \le b)$

Ce n'est pas le cas pour les fonction croissantes (au sens large) :

Attention: Si f est croissante sur I,

Alors $f(x) \le f(y) \Rightarrow x \le y$ est **FAUX**

En effet, il suffit de prendre une fonction constante.

2 Continuité

Définition 9 : Continuité en un point

Soient I un intervalle de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$ une application.

f est continue en x_0 si et seulement si $\lim_{x \to x_0} f(x) = f(x_0)$

$$(\quad \Longleftrightarrow \quad \lim_{x \to x_0} f(x) - f(x_0) = 0)$$

Autrement dit:

f est continue en x_0 si et seulement si

Quand $x \to x_0$ alors $f(x) \to f(x_0)$

Définition 10 : continuité sur un ensemble

f est continue sur I si et seulement si

f est continue en tout point de I

Propriété 3 : Opérations

• Soient f, g deux fonctions continues en $x_0 \in I$ et $(a, b) \in \mathbb{R}^2$. Alors af + bg, $f \cdot g$ sont continues en x_0 .

De plus, si $g(x_0) \neq 0$, alors f/g est également continue en x_0 .

• Soient f, g deux fonctions continues sur I et $(a, b) \in \mathbb{R}^2$. Alors af + bg, f.g sont continues sur I.

De plus f/g est également continue en tout point x de I tel que $g(x) \neq 0$

Propriété $4:C^0(I)$

 \parallel L'ensemble des application continues sur un intervalle I est noté $\parallel C^0(I).$

Propriété 5 : Composée

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux applications continues telles que $f(I) \subset J$ (c'est-à-dire $\forall x \in I, f(x) \in J$)

Alors $g \circ f$ est continue sur I.

3 Théorème de la bijection

Propriété 6 : Théorème de la bijection

Soit I un <u>intervalle</u> de $\mathbb R$ et $f:I\to\mathbb R$ une application. Si

- f est continue sur I
- f est strictement croissante (resp. décroissante) sur I.

Alors

- f réalise une bijection de I sur J = f(I)
- Sa bijection réciproque $f^{-1}: J = f(I) \to I$ est continue et strictement monotone
- De plus f^{-1} elle est de même monotonie que f, c'est-à-dire : f^{-1} est strictement croissante (resp. décroissante) si et seulement si f est strictement croissante (resp. décroissante)

Propriété 7 : Cas d'un intervalle ouvert

Soit f continue et strictement croissante sur un intervalle I =]a; b[avec $(a,b) \in \mathbb{R}^2$

Alors f réalise une bijection

de
$$I =]a, b[$$
 sur $f(I) =] \lim_{x \to a} f(x) ; \lim_{x \to b} f(x) [$

Propriété 8 : Cas d'un intervalle semi-fermé

Soit f continue et strictement <u>décroissante</u> sur un intervalle I = [a; b[avec $(a, b) \in \overline{\mathbb{R}}^2$

Alors f réalise une bijection

de
$$I = [a; b[\text{ sur } f(I) =] \lim_{x \to b} f(x) ; f(a)]$$

Remarque: On obtiendrait des propriétés similaires en remplaçant [a, b[par]a, b] ou bien encore en prenant f croissante. A vous de les écrire!

Exemples

• $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2$

f est continue et strictement croissante sur \mathbb{R}^+ .

Donc la restriction de f sur \mathbb{R}^+ (au départ) et \mathbb{R}^+ (à l'arrivée) :

 $g: \mathbb{R}^+ \to \mathbb{R}^+, \ x \mapsto x^2$

est une bijection

On dira plus simplement

« f réalise une bijection de \mathbb{R}^+ sur $f(\mathbb{R}^+) = \mathbb{R}^+$. »

Sa réciproque g^{-1} est également une bijection continue et strictement croissante de \mathbb{R}^+ sur \mathbb{R}^+ .

On reconnaît dans g^{-1} la fonction racine carrée : $x \to \sqrt{x}$

• f est continue strictement décroissante sur \mathbb{R}^- . Elle réalise donc une bijection (h) de \mathbb{R}^- sur $f(\mathbb{R}^-) = \mathbb{R}^+$. Sa réciproque h^{-1} est une bijection continue strictement décroissante de \mathbb{R}^+ sur \mathbb{R}^- .

On a en fait : $\forall x \in \mathbb{R}^+, \ h^{-1}(x) = -\sqrt{x}$

• Question subsidiaire : déterminer $h^{-1} \circ g$ et $g \circ h^{-1}$

Exemple 2: $f: [-\pi/2, \pi/2] \to \mathbb{R}, x \mapsto \sin x$

f est strictement croissante et continue sur $I=[-\pi/2,\pi/2]$

Donc elle établit une bijection g de $I = [-\pi/2, \pi/2]$ sur f(I) = [-1, 1]

Sa réciproque g^{-1} est une bijection de [-1,1] dans $[-\pi/2,\pi/2]$ qui est également continue et strictement croissante.

Remarques : Cette fonction réciproque g^{-1} est notée arcsin. On obtient de même les fonctions arccos et arctan qui seront étudiées prochainement

4 Bijection

Définition 11: Bijection (Rappel)

 $f:E \to F$ est une bijection si et seulement si tout élément de F admet un unique antécédent dans E

Ou encore

Pour tout $y \in F$, il existe un **unique** $x \in E$ tel que : y = f(x)

Définition 12 : Réciproque (Rappel)

Soit $f: E \to F$ une bijection. Alors on définit sa bijection réciproque $f^{-1}: F \to E$ tel que

Pour tous $x \in E$, $y \in F$, $x = f^{-1}(y) \iff f(x) = y$

A retenir

$$\forall x \in E, \ \forall y \in F, \quad y = f(x) \iff f^{-1}(y) = x$$

ou encore :

$$\forall x \in F, \ \forall y \in E, \quad y = f^{-1}(x) \quad \iff \quad x = f(y)$$

Remarque: Dans toutes ces formules, ainsi que dans la suite, il est essentiel de déterminer à quels ensembles appartiennent les différentes variables

Propriété 9 : Composée (1)

 $\underline{D\'{e}monstration}$

• Mq $\forall x \in F, (f \circ f^{-1})(x) = x$ Soit $x \in F$

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(y)$$
 avec $y = f^{-1}(x)$

On a $y \in E$

Or, d'après la <u>définition</u> de la réciproque $y = f^{-1}(x) \iff f(y) = x$ Donc $(f \circ f^{-1})(x) = f(y) = x$

• Mq $\forall x \in E(f^{-1} \circ f)(x) = x$ (Même principe!)

Soit $x \in E$

$$(f^{-1} \circ f)(x) = f^{-1}\big(f(x)\big) = f^{-1}(y)$$
 en posant $y = f(x) \in F$
Par définition de f^{-1} , on a : $y = f(x) \iff f^{-1}(y) = x$
Donc $(f^{-1} \circ f)(x) = f^{-1}(y) = x$ CQFD

Définition 13: Application identité

Soit E un ensemble.

L'application identité est l'application de E dans E notée $-\operatorname{Id}_E-$ et définie par :

 $\forall x \in E, \ \mathrm{Id}_E(x) = x$

ou encore :

 $\mathrm{Id}_E: E \to E, \ x \mapsto x$

Pour $f: E \to F$, on a: $f \circ Id_E = f$ et $Id_F \circ f = f$

Propriété 10 : Composée (2)

Soit $f: E \to F$ une application bijective et $f^{-1}: F \to E$ sa réciproque. Alors $f \circ f^{-1} = \operatorname{Id}_F$ et $f^{-1} \circ f = \operatorname{Id}_E$

Démonstration

- $f \circ f^{-1}: F \to F$ et $\mathrm{Id}_F: F \to F$ Même ensemble de départ et même ensemble d'arrivée.
- $\forall x \in F, (f \circ f^{-1})(x) = x = \mathrm{Id}_F(x)$ (d'après la propriété précédente)
- Conclusion : on a bien $f \circ f^{-1} = \mathrm{Id}_F$

On fait de même pour montrer que $f^{-1} \circ f = \mathrm{Id}_E$

5 Dérivation

5.1 Définitions

Définition 14 : Rapport de Newton

Le rapport de Newton de de f en a est le coefficient directeur de la droite (AM) avec A(a, f(a)) et M(x, f(x))

Il est égal à
$$\frac{f(x) - f(a)}{x - a}$$

Définition 15 : Dérivée

Soit $f: I \to \mathbb{R}$ une fonction et $a \in I$. f est dérivable en a si et seulement si

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 existe et est **finie**.

Dans ce cas, on note

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Remarque: Dans les calculs concrets, la formule $\frac{f(x_0 + h) - f(x_0)}{h}$ est souvent plus pratique à utiliser. (Car il est plus facile de raisonner avec des trucs qui tendent vers 0)

Exemples : Déterminer la dérivée de $f:x\mapsto x^4$ en 2, en a , la dérivée de $g:x\mapsto \sqrt{x}$ en 2, en a>0

Propriété 11 : continuité et dérivabilité

Soit $f: I \to \mathbb{R}$ une fonction Si f est dérivable en $a \in I$, alors f est continue en a

Remarque : dans la pratique, cette propriété n'est pas très utile.

Définition 16 : Dérivée à gauche, à droite

Soit $f: I \to \mathbb{R}$ une fonction.

f est dérivable à droite (resp. à gauche) en a si et seulement si

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \qquad (\text{ resp. } \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a})$$

existe et est finie.

Dans ce cas, on note

$$f'_d(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$$
(resp. $f'_g(a) = \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^-} \frac{f(a+h) - f(a)}{h}$)

Exemple: $f: x \mapsto |x|$ est dérivable à gauche et à droite en 0.

Propriété 12 formules de calculs

$$(a.f + bg)' = a.f' + b.g'$$

$$(f.g)' = f.g' + f'.g$$

$$(f^n)' = nf^{n-1}.f'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$(fog)' = (f'og) \times g'$$

Propriété 13 : Dérivée de la composée

Remarque: $g(I) \subset J$ équivaut à dire que : $\forall x \in I, g(x) \in J$ Cela garantit que pour tout $x \in I, f(g(x))$ est bien défini.

Définition 17 : Dérivée sur un intervalle

Soit I un intervalle de $\mathbb R$.

On dit que f est dérivable sur I si elle est dérivable en tout point de I.

La fonction qui a tout point de I associe le nombre dérivé de f en ce point est appelée la fonction dérivée de f et est notée f'.

Propriété 14 Dérivée et tangente

• Si f est dérivable en a alors C_f admet une tangente en a de coefficient directeur f'(a) et d'équation

$$y = f'(a)(x - a) + f(a)$$

• Si $\lim_{x\to a} \frac{f(x) - f(a)}{x - a} = +\infty$ (resp. $-\infty$), alors C_f admet une **tangente verticale** en a

Exemple: Dérivabilité de $f: x \mapsto \sqrt{x}$ en 0?

Examinons si f est dérivable en 0

Rapport de Newton en 0 : Pour x > 0, $\frac{f(x) - f(0)}{x - 0} = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}$

D'où $\lim_{x\to 0^+} \frac{f(x) - f(0)}{x - 0} = +8$

Donc $x \mapsto \sqrt{x}$ n'est pas dérivable en 0. (Mais C_f admet une tangente <u>verticale</u> en (0,0)

5.2 Dérivées successives

Définition 18 : Dérivées successives

Soit f une fonction définie sur un intervalle I

Si f' est dérivable, on note f'' la dérivée de f', appelée dérivée seconde de f.

Si f'' est dérivable, on note $f''' = f^{(3)} = (f'')'$ la dérivée troisième de f.

De même, on note $f^{(n)}$ la dérivée $n^{\text{ième}}$ de f si elle existe.

On a $f^{(n+1)} = [f^{(n)}]'$

Par convention: $f^{(0)} = f$.

Exemple: $f(x) = \frac{1}{x}$

f est dérivable sur \mathbb{R}^*

 $f'(x) = \dots \qquad f''(x) = \dots \qquad f^{(3)}(x) = \dots$

Définition 19 : Fonction de classe C^n

f est dite de classe C^n sur I si f est n fois dérivable et si sa dérivée $n^{\text{ème}}$ est continue sur I.

f est dite de classe C^0 si f est continue.

f est dite de classe C^{∞} si f admet des dérivées à tous les ordres.

Propriété 15 : $C^n(I)$

L'ensemble des fonction de classe C^n sur I est noté : $C^n(I)$ $C^n(I)$ et $C^{\infty}(I)$ sont des sous-espaces vectoriels.

5.3 Fonctions monotones

Propriété 16 : Fonction constante

Soit f une fonction continue sur [a, b] (avec a < b) et dérivable sur [a, b].

Alors f est constante sur [a, b] si et seulement si : $\forall x \in [a, b]$, f'(x) = 0

Propriété 17: Fonction monotone

Soit f une fonction continue sur [a, b] et dérivable sur [a, b]. Alors f est croissante (resp. décroissante) sur [a, b] si et seulement

si: $\forall x \in]a, \ b[, \quad f'(x) \ge 0 \quad (\text{resp.} \quad f'(x) \le 0).$

Propriété 18 : fonction strictement monotone

Soit f une fonction continue sur [a, b] et dérivable sur]a, b[. Si f' > 0 sur]a, b[(resp. f'(x) < 0 sur]a, b[).

alors

f est **strictement** croissante (resp. **strictement** décroissante) sur [a, b]

Propriété 19 : fonction strictement monotone (2)

Soit f une fonction définie sur un **intervalle** I telle que

- f est continue sur I
- f est dérivable sur $I \backslash F$ où F contient un un nombre fini de points de I
- f' > 0 sur $I \setminus F$ (resp. f' < 0 sur $I \setminus F$)

alors f est **strictement** croissante (resp. **strictement** décroissante) sur I

Définition 20 : Extremum local/ global

Soit f définie sur I et $a \in I$

- f admet un maximum global en $a \iff \forall x \in I, f(x) \leq f(a)$
- \bullet f admet un maximum local en a

 \iff il existe un intervalle <u>ouvert</u> J contenant a tel que

$$\forall x \in J, \ f(x) \le f(a)$$

- \bullet fadmet un extremum local (resp. global) en a
- \iff f admet un mimimum ou un maximum local (resp. global) en a