Croissance comparée

Propriété 1 : Croissance comparée

$$\begin{vmatrix} \operatorname{Pour} \ a > 0 \ \operatorname{et} \ b > 0 \ \operatorname{r\'eels} : \\ \lim_{x \to +\infty} \frac{e^{ax}}{x^b} = \dots & \lim_{x \to +\infty} \frac{x^b}{e^{ax}} = \dots \\ \lim_{x \to +\infty} \frac{x^a}{(\ln x)^b} = \dots & \lim_{x \to +\infty} \frac{(\ln x)^b}{x^a} = \dots \\ \lim_{x \to 0^+} x^a \ln x = \dots & \lim_{x \to 0^+} \frac{1}{x^a \ln x} = \dots \\ \lim_{x \to 0^+} x^a |\ln x|^b = \dots & \lim_{x \to 0^+} \frac{1}{x^a |\ln x|^b} = \dots \\ \lim_{x \to -\infty} e^{ax} x^n = \dots & \lim_{x \to -\infty} \frac{1}{e^{ax} x^n} = \dots \end{aligned}$$

Pour pouvoir justifier qu'on utilise bien la croissance comparée, il faut vérifier les 3 conditions suivantes

- 1) Avoir une forme indéterminée (FI)
- 2) Avoir un quotient ou un produit
- 3) N'avoir que des expressions du type e^{ax} , $|\ln x|^b$, x^c

1) Les limites suivantes sont elles résolues directement par croissance comparée ? 2) Dans tous les cas, les résoudre

- $\lim_{x \to +\infty} x^2 \ln x \qquad \text{b)} \quad \lim_{x \to +\infty} \frac{x^2}{\ln x} \qquad \text{c)} \quad \lim_{x \to +\infty} \frac{\ln^2 x}{\sqrt{x}}$ $\lim_{x \to +\infty} \frac{\ln(x+1)}{x} \qquad \text{e)} \quad \lim_{x \to 0} x^2 \ln x \qquad \text{f)} \quad \lim_{x \to 0} \frac{x^2}{\ln x}$ $\lim_{x \to 0} \frac{x^2}{\ln x} \qquad \lim_{x \to 0} \frac{x^2}{\ln x$

Négligeabilité

Exemples

• En $+\infty$ x^3 « croît plus vite » que x^2 On va dire que x^2 est négligeable devant x^3 On notera : $x^2 = o(x^3)$ en $+\infty$

• En $+\infty$

D'après la croissance comparée, e^x « croît plus vite » que x^3 On va dire que x^3 est négligeable devant e^x

- Et on notera : $x^3 = o(e^x)$ en $+\infty$
- En 0 x^3 tend « plus vite » que x^2 vers 0 On va dire que x^3 est négligeable devant x^2

Et on notera : $x^3 = o(x^2)$ en 0 (Noter que c'est le contraire de ce qu'on a en $+\infty$)

Définition 1 : Négligeabilité

Soit deux fonctions f et g définies au voisinage de a (avec $a \in \mathbb{R}$)

On note f(x) = o(g(x)) en a ou f = o(g) en aet on lit « f est négligeable devant q en a »

si et seulement si $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$

Exercice 2

- a) Traduire les croissances comparée en $+\infty$ et en 0 en termes de négligeabilité
- b) Comparer x^3 et $\sqrt[3]{x^5}$ en 0 et en $+\infty$
- c) Comparer $1/x^2$ et $1/x^3$ en 0 et en $+\infty$
- d) Comparer $\sqrt{1+x^3}$ et x en 0 et en $+\infty$

Propriété 2 : cas particulier

$$\parallel f(x) = o(1)$$
 en $a \iff \dots$

Propriété 3 : combinaison linéaire

$$\|\forall (a,b) \in \mathbb{R}^2, \quad f = o(h) \text{ et } g = o(h) \Rightarrow (a.f + b.g) = o(h)$$

En particulier, on a par exemple: $f = o(4h) \Rightarrow f = o(h)$

Équivalents

Dans cet exercice, on admet que les fonctions usuelles sont dérivables. En utilisant la définition de la dérivée qu'on utilisera en 0 ou en 1, déterminer les limites suivantes :

Propriété 4 : Limites particulières

$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = \dots \qquad \lim_{x\to 1} \frac{\ln x}{x-1} = \dots$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = \dots$$

$$\alpha \in \mathbb{R}^*, \quad \lim_{x\to 0} \frac{(1+x)^\alpha - 1}{x} = \dots \qquad \lim_{x\to \dots} \frac{x^\alpha - 1}{\dots} = \dots$$

$$\lim_{x\to 0} \frac{\sqrt{1+x} - 1}{x} = \dots \qquad \lim_{x\to \dots} \frac{\sqrt{x} - 1}{\dots} = \dots$$

$$\lim_{x\to 0} \frac{\sin x}{x} = \dots \qquad \lim_{x\to 0} \frac{\tan x}{x} = \dots$$
En déduire enfin
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \dots$$

Définition 2 : Équivalents

Soit deux fonctions f et g définies au voisinage de a (avec $a \in \mathbb{R}$) $f(x) \underset{x \to a}{\sim} g(x)$ ou plus simplement $f \sim g$ On note et on lit « f est équivalente à g en a » si et seulement si $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$

Exercice 4

Traduire les limites particulières précédentes en termes d'équivalents

Propriété 5 : Composée

On pose
$$X = h(x)$$

Si $X = h(x) \to b$ quand $x \to a$
Et $f(X) \underset{X \to b}{\sim} g(X)$
Alors $f(h(x)) \underset{x \to a}{\sim} g(h(x))$

Exercice 5 Trouver un équivalent simple de

- a) $e^{3x} 1$ en 0 b) $e^{1/x} 1$ en $-\infty$
- c) $\ln\left(\frac{1+x}{1-x}\right)$ en 0 d) $\sin 2x$ en 0
- e) $1 \cos(3x)$ en 0 f) $\sqrt{\frac{2x^2 1}{2x^2 + x + 1}}$ en $+\infty$

Les équivalents sont compatibles avec les opérations suivantes : multiplication, quotient, puissance fixée (c'est-à-dire ne dépendant pas de la variable). C'est-à-dire :

Propriété 6 : Opérations compatibles

Exercice 6 Donner des équivalents simples de

$$f(x) = \frac{\sin(2x^2)}{1 - \cos(3x)} \quad \text{en } 0 \quad g(x) = \sqrt{e^{3x} - 1} \quad \text{en } 0^+$$
$$h(x) = (\tan(2x))^n \quad \text{en } 0 \quad i(x) = \tan(1/x) \cdot \ln\frac{x+1}{x-2} \quad \text{en } +\infty$$

Attention: on ne peut pas additionner des équivalents. Sauf avec des conditions très strictes :

Propriété 7 : Somme (« Le gros bouffe le petit »)

$$\| \forall \alpha, \beta \in \mathbb{R}^*, \quad g = o(f) \text{ en } a \implies \alpha.f + \beta.g \underset{a}{\sim} \dots$$

Exercice 7

- A) Donner des équivalents simples de
 - a) $2x + 3 \ln x$ en $+\infty$ b) $2x + 5x^2$ en $+\infty$

 - c) $2x + 5x^2$ en 0 d) $2x^3 + 5x^2 4x^4$ en 0, $+\infty$, 1
 - e) $\frac{-2x^3 + 4x + 5}{2x^2 + x + 5}$ en $+\infty$
- B) Déterminer un équivalent simple de f(x) + g(x) avec :
 - $f(x) \underset{x \to +\infty}{\sim} 2x^3 5x$ $g(x) \underset{x \to +\infty}{\sim} -2x^2 + 2x + 1$

Propriété 8 : Somme (bis)

Si
$$f \sim \alpha.h$$
 et $g \sim \beta.h$ avec $\alpha + \beta \neq 0$
Alors $f + g \sim (\alpha + \beta).h$

Exercice 8 Donner un équivalent simple de (f+g)(x) dans chacun des cas suivants:

- a) $f(x) \underset{x \to +\infty}{\sim} 2x^2$ $g(x) \underset{x \to +\infty}{\sim} -3x^2$
- b) $f(x) \underset{x \to +\infty}{\sim} 2x^2 x$ $g(x) \underset{x \to +\infty}{\sim} 3x^2 + 2x$
- c) $f(x) \underset{x \to +\infty}{\sim} 2x^2$ $g(x) \underset{x \to +\infty}{\sim} -2x^2$

Propriété 9 : transitivités