1) Les nombres complexes

- § exponentielle complexe
- § racines carrée d'un complexe. Équation du second degré complexe. somme et produit des racines
- \S racines $n^{\text{ème}}$ de l'unité, d'un nombre complexe
- § Savoir faire:
 - factoriser $1 \pm e^{ia}$, $e^{ia} \pm e^{ib}$
 - Donner des interprétations géométriques basiques des différentes notions
 - Calculer les sommes $\sum \cos(kx)$ et $\sum \sin(kx)$

2) Fonctions réelles

- § Formules de calcul de dérivées (on n'a pas encore vu (revu?) le rapport de Newton)
- § Savoir faire:

Déterminer sur quel domaine le formule de dérivation sont valables (avant de calculer la dérivé....)

Travailler sur des fonctions du type $x \mapsto a^x, x^x$ etc.

Utiliser la croissance comparée pour des limites

Plus:

3) fonctions réelles

Parité.

Définition de la dérivé (Rapport de Newton).

4) Limites:

Croissance comparée, Négligeabilité, Équivalents.

- 5) Savoir faire:
 - Déterminer si une fonction est dérivable en un point
 - Connaître les limites particulières ($\frac{e^x 1}{x}$ en 0, etc.) et la traduction en équivalents ($e^x 1 \sim x = x = 0$)
 - Changement de variable dans les limites et les équivalents

Dans les prochains épisodes

- Bijection réciproque et dérivée
- Fonctions trigo réciproques

Démonstrations de cours possibles :

- Retrouver les limites particulières et les équivalents qui sont liés (avec $\ln x$, $\ln(1+x)$, e^x , $(1+x)^a$, $\sin x$, $\cos x$, $\tan x$ en utilisant le rapport de Newton
- Monter que $g = o(f)ena \Rightarrow \alpha f + \beta g \sim \alpha f$
- $f \sim \alpha.h$ et $g \sim \beta g$ avec $\alpha + \beta \neq 0$ \Rightarrow $f + g \sim (\alpha + \beta)h$