Attention Certaines expressions sont suivies d'un point d'interrogation (?). Celles-ci peuvent ne correspondre à aucune formule. Le signaler alors en écrivant « PFC » (Pas de Formule Connue)

1)
$$\sqrt{x^2 + 1} = ?$$
 pour x (E 025b)

Réponse fausse : -1

2) Dans
$$\mathbb{R}$$
: $x^2 - 3x > 0 \iff$ (E 076a)

3)
$$\sin x = -1 \iff$$
 (E 103d)
 Réponse fausse : -1

Reponse lausse: -1

4)
$$-\cos(x) = \sin(\dots) = \sin(\dots)$$
 (E 111b)

5)
$$\sin x < \frac{1}{2} \iff \dots$$
 (E 163a)

(Un seul encadrement)

6)
$$\forall z, \ z' \in \mathbb{C}, \ |z+z'| = ? \dots$$
 (E 225a)
Réponse fausse : -0.5

7)
$$\forall z, z' \in \mathbb{C}^*, \ \arg(z) - \arg(z') = ? \dots (E 232b)$$

Réponse fausse : -0,5

8)
$$\forall x \in \mathbb{R}, \quad \arg(e^{\mathbf{i}x}) = ? \dots (E 243)$$

9) **Définition**: (Écrire avec des fonctions définies $\underline{\operatorname{sur } \mathbb{R}}$) (E 250c)

Pour $t \in \mathbb{R}$, $e^{(-2+5\mathbf{i})t} = \dots$

10) Pour
$$z \in \mathbb{C}$$
, $\overline{(e^z)} = ?$ (E 254)

11) Définition : pour
$$z \in \mathbb{C}$$
 (E 320e)

 $|z| = 1 \iff z \in \dots$ (Donner le <u>notation</u> de l'ensemble)

12) Racines *n*-ièmes <u>distinctes</u> de l'unité dans \mathbb{C} : (E 321c)

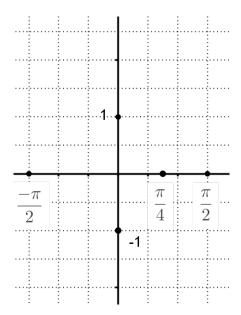
sont de la forme $z_k = \dots$ avec $\omega = \dots$

et $k \in \dots$

13) Soit
$$(s, p) \in \mathbb{C}^2$$
 $\forall (z_1, z_2) \in \mathbb{C}^2$ (E 331)
$$\begin{cases} z_1 + z_2 = s \\ z_1 z_2 = p \end{cases} \iff (z_1, z_2) \text{ sont les racines du polynôme}$$

 $Q(x) = \dots$ (à écrire en fonction de s et p)

14) Vrai ou Faux?..... (E 356b)


Dans un repère orthonormé (O, \vec{i}, \vec{j})

Soient \vec{u} , \vec{w} deux vecteurs d'affixes z_u, z_w non nulles. Alors

 $\operatorname{arg}\left(\frac{z_w}{z_u}\right) = 0 \quad [\pi] \quad \Longleftrightarrow \quad (u, v) \text{ sont colinéaires de même sens}$

15)

16) Tracer l'allure de la courbe de $x\mapsto \tan x$ sur $[-\pi/2,\ \pi/2]$ On tracera précisement la tangente au point d'abscisse 0. (E 448a) On indiquera une valeur particulière sur le graphique et les asymptotes

17) <u>Défintion</u>: (u_n) est une suite arithmétique de raison r (E 510c)

18) (u_n) est une suite géométrique de raison $q \neq 0$ (E 515c)

 $\sum_{k=p}^{n} u_k = \frac{u_p - u_{n+1}}{1 - q} = \dots \quad \text{pour } q.\dots$

Réponse fausse : -0.5

19) Pour $n \ge 1$, on pose $S_n = \sum_{k=n}^{n+20} \frac{1}{k}$ (E 538b)

Alors $S_{n+1} - S_n = \dots$

Réponse fausse : -0,5

20) <u>Définition</u>: Pour $x \in \mathbb{R}$, (E 560c)

 $|x| = \max(x, -x) = \begin{cases} \dots \\ \dots \\ \dots \end{cases}$

- 22) Vrai ou Faux? (E 584c) Pour $x \in \mathbb{R} \setminus \{0\}$, $x < 2 \Rightarrow \frac{1}{x} > \frac{1}{2}$
- 23) Soient $a, b \in \mathbb{R}$ (E 592b) $\max(a, b) \times \min(a, b) = \dots$ **Réponse fausse : -1**
- 24) Donner un encadrement décimal de $x \in \mathbb{R}$ à 10^{-n} près : (E 605b)

25) Propriété (ou Formule de Pascal)

$$\binom{n-1}{p} + \binom{\dots}{\dots} = \binom{\dots}{p}$$
 pour

pour

Réponse fausse : -0.5

- 26)
- 27) Attention : on donnera les étapes du calcul

(E 640e)

$$\sum_{k=0}^{n} \binom{n+1}{k} x^k = \dots$$

.....

.....

28) Négation de

(E 709a)

 $\forall M \in E, \ \exists y \in E, \ \forall x \in E, \ (x > y) \Rightarrow (x^2 > M)$

.....

Réponse fausse : -1

29) Soit (E) une équation d'inconnue x et d'ensemble solution S. (E 713b) « 3 et 7 sont les seules solutions possibles de (E) »

Est équivalent à :

 $\{1,3\}\subset S$ $S\subset\{1,3\}$ $S=\{1,3\}$ Aucune de ces possibilités

Entourer la bonne réponse

- 30) $(\exists i \in I, x \in A_i) \iff x \in \dots$ (E 740c)
- 31) Exprimer en français

 $\underline{\text{D\'efinition}}: \quad f: E \to F \text{ est bijective} \tag{E 756b}$

si et seulement si

32) Soient $f: E \to F$ et $g: G \to H$ deux applications (E 769) Ecrire en langage mathématique :

 $f = g \iff \dots$

.....