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Exercice 1

1. a) Résoudre sur R l'équation di�érentielle suivante :

y′′ + y′ − 2y = e−2x + e−x. cos 3x (E)

On a une équation linéaire du second ordre à coe�cients constants.

� Solution de l'équation homogène associé (EHA) y′′ + y′ − 2y = 0
(E0)

Équation caractéristique r2 + r − 2 = 0

Solution évidente : r1 = 1, r2 = −2
Donc y0(x) = λex + µe−2x avec λ, µ ∈ R

� Solution particulière de y′′ + y′ − 2y = e−2x (E1)

On cherche une solutions sous la forme y(x) = a.x.e−2x

(car e−2x est une des solutions de l'EHA)

y′(x) = a(−2x+ 1)e−2x

y′′(x) = a(4x− 2− 2)e−2x = a(4x− 4)e−2x

y′′ + y′ − 2y = a
[
(4x− 4) + (−2x+ 1)− 2x)

]
e−2x = a.(−3)e−2x

Donc (E1) ⇐⇒ −3ae−2x = e−2x ⇐⇒ a = −1/3

y1(x) =
−1

3
x.e−2x solution particulière de (E1)

� Solution particulière de

y′′ + y′ − 2y = e−x cos 3x = Re
(
e(−1+3i)x

)
(E2)

Cherchons une solution de y′′ + y′ − 2y = e(−1+3i)x (E′2)

de la forme y(x) = a.e(−1+3i)x

y′(x) = a.(−1 + 3i)e(−1+3i)x

y′′(x) = a.(−1 + 3i)2e(−1+3i)x = a.(−8− 6i)e(−1+3i)

y′′+y′−2y = a.
[
(−8−6i)+(−1+3i)−2

]
e(−1+3i) = a.(−11−3i)e(−1+3i)

Donc y′′ + y′ − 2y = e(−1+2i)x ⇐⇒ (−11− 3i)a = 1

⇐⇒ a =
1

−11− 3i
=
−11 + 3i

112 + 32
=
−11 + 3i

130

y2(x) = Re

(
−11 + 3i

130
e(−1+3i)x

)
=

1

130
e−x Re ((−11 + 3i)(cos 3x+ i sin 3x))

y2(x) =
1

130
e−x(−11 cos 3x− 3 sin 3x) solution particulière de (E2)

� Conclusion : par le principe de superposition, les solutions de (E) sont
de la forme

y(x) = y0(x) + y1(x) + y2(x)

= λex + µe−2x − 1

3
x.e−2x − 1

130
(11 cos 3x+ 3 sin 3x)e−x

b) Déterminer la solution de (E) véri�ant les conditions initiales :

y(0) = 1 y′(0) = 1

y(x) = λex + µe−2x − 1

3
x.e−2x − 1

130
e−x(11 cos 3x+ 3 sin 3x)

y(0) = λ+ µ− 11

130

y′(x) = λex − 2µe−2x − 1

3
(1− 2x).e−2x

− 1

130

[
− e−x(11 cos 3x+ 3 sin 3x) + e−x(−33 sin 3x+ 9 cos 3x)

]
y′(0) = λ− 2µ− 1

3
− 1

130
(−11 + 9) = λ− 2µ− 1

3
+

2

130{
y(0) = 1
y′(0) = 1

⇐⇒


λ +µ − 11

130
= 1

λ −2µ −1

3
+

2

130
= 1

⇐⇒
130.L1

(3× 130)L2

{
130.λ +130.µ −11 = 130

(3 · 130)λ −(2.3.130)µ −130 + 6 = 390

⇐⇒

{
130.λ +130.µ = 141

(3 · 130)λ −(6 · 130)µ = 514

⇐⇒

{
130.λ +130.µ = a

(3 · 130)λ −(6 · 130)µ = b

avec

{
a = 141
b = 390 + 130− 6 = 514

⇐⇒ L1

L2 − 3L1

{
130.λ +130.µ = a

−(9 · 130)µ = −3a +b
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⇐⇒ 9L1 + L2

L2

{
(9 · 130)λ = 6a +b

−(9 · 130)µ = −3a +b

⇐⇒


λ =

6a+ b

(9 · 130)

µ =
3a− b

(9 · 130)

6a+ b = 6 · 141 + 514 = 846 + 514 = 1360

3a− b = 3 · 141− 514 = 423− 514 = −91

⇒ λ =
1360

9 · 130
µ =

−91

9 · 130
Donc

y(x) =
1360

1170
ex − 91

1170
e−2x − 1

3
x.e−2x − e−x

130
(11 cos 3x+ 3 sin 3x)

Vérif :


λ +µ − 11

130
= 1

λ −2µ −1

3
+

2

130
= 1

λ+ µ− 11

130
=

1360

9 · 130
+
−91

9 · 130
− 11

130

=
1360− 91

9 · 130
− 11

130
=

1269

9 · 130
− 11

130
=

9 · 141

9 · 130
− 11

130
=

141− 11

130
= 1

λ− 2µ− 1

3
+

2

130
=

1360

9 · 130
− 2

−91

9 · 130
− 1

3
+

18

9 · 130

=
1360 + 182 + 18

9 · 130
− 1

3
=

1560

9 · 130
− 1

3
=

130 · 12

9 · 130
− 1

3
=

12

9
− 1

3
= 1

2. Résoudre l'équation di�érentielle suivante sur ]0; +∞[

y′ +
2

x
y =

cos 3x

x
(E)

On a une équation linéaire du premier ordre à coe�cients non constants.

� Solution de l'équation homogène associé (EHA) y′ + a(x).y = 0 avec

a(x) =
2

x
(E0)

A(x) = 2 lnx est une primitive de a

Les solutions sont de la forme y0(x) = K.e−A(x) = Ke−2 ln x = K.
1

x2

� Solution particulière.

On la cherche sous la forme y(x) = C(x).
1

x2
(méthode de variation de la

constante)

y′(x) = C ′(x)
1

x2
+ C(x)

−2

x3
y solution de (E) ⇐⇒

⇐⇒ C ′(x)
1

x2
+ C(x)

−2

x3
+

2

x
C(x).

1

x2
=

cos 3x

x

⇐⇒ C ′(x)
1

x2
=

cos 3x

x

⇐⇒ C ′(x) = x cos 3x
Cherchons une primitive de x cos 3x

On peut poser C(x) =

∫ x

0

t cos 3t dt

et faire une intégration par parties :{
u(t) = t u′(t) = 1

v′(t) = cos 3t v(t) =
1

3
sin 3t

avec u, v C1 sur R

C(x) =

[
t
1

3
sin 3t

]x
0

−
∫ x

0

1

3
sin 3t dt

=
1

3
x sin 3x−

[
−1

9
cos 3t

]x
0

=
1

3
x sin 3x+

1

9
cos 3x− 1

9
C est dé�nie à une constante additive près, donc on peut prendre

C(x) =
1

3
x sin 3x+

1

9
cos 3x

Et donc yP (x) =
1
3x sin 3x+ 1

9 cos 3x

x2
=

3x sin 3x+ cos 3x

9x2

� Conclusion : Les solution de (E) sont de la forme

y(x) = K.
1

x2
+

3x sin 3x+ cos 3x

9x2
avec K ∈ R

Exercice 2

1. Déterminer une primitive sur un domaine à préciser des fonctions sui-
vantes :

a) f : x 7→ 1

x2 − 4x+ 8

x2 − 4x+ 8 a pour discriminant ∆ = 42 − 4× 8 = −16 < 0

Donc f est dé�nie et continue sur R et donc admet une primitive sur R

23 janvier 2026 17:24 2/ 8 "2026_PCSI DS 05 (2026_01_23)"



2025-26 PCSI DS 05 Corrigé

1

x2 − 4x+ 8
=

1

(x− 2)2 − 4 + 8
=

1

(x− 2)2 + 22

=
1

4
· 1

(x−22 )2 + 1
=

2

4
·

1
2

(x−22 )2 + 1

⇒ F (x) =
1

2
arctan(x−22 )

est une primitive de f sur R

b) h : x 7→ x+ 1

(2x− 1)2

< < < On sait primitiver
1

(2x− 1)2
et

1

(2x− 1)

Il faut donc se débarrasser du x dans le dénominateur :> > >

h est dé�nie et continue sur R\{1/2} Donc h admet des primitives sur
]−∞, 1/2[ et sur ]1/2, +∞[

h(x) =
x+ 1

(2x− 1)2
=

1

2
· 2x+ 2

(2x− 1)2
=

1

2
· (2x− 1) + 3

(2x− 1)2

=
1

2

(
2x− 1

(2x− 1)2
+

3

(2x− 1)2

)
=

1

2

(
1

2
· 2

2x− 1
+
−3

2
· −2

(2x− 1)2

)
H(x) =

1

2

(
1

2
ln |2x− 1|+ −3

2
· 1

2x− 1

)
en utilisant

(
1

u

)
=
−u′

u2

H(x) =
1

4
ln |2x− 1| − 3

4
· 1

2x− 1
On obtient donc,

� sur ]−∞, 1/2[, H(x) =
−3

4

1

2x− 1
+

1

4
ln(−2x+ 1)

� sur ]1/2, +∞[, H(x) =
−3

4

1

2x− 1
+

1

4
ln(2x− 1)

2. Calculer
∫ 9

1

t+ 1

t2
√
t
dt en posant u =

√
t

u =
√
t ⇐⇒ t = u2 ⇒ dt = 2u du

Bornes :

{
t = 9 ⇒ u = 3
t = 1 ⇒ u = 1∫ 9

1

t+ 1

t2
√
t
dt =

∫ 3

1

u2 + 1

u4.u
(2u du)

= 2

∫ 3

1

u2 + 1

u4
du

= 2

∫ 3

1

1

u2
+

1

u4
du

= 2

∫ 3

1

u−2 + u−4 du

= 2

[
−u−1 +

u−3

−3

]3
1

= 2

[
−1

u
+

1

−3u3

]3
1

= 2

[(−1

3
+

1

−3.33

)
−
(−1

1
+

1

−3.13

)]
= 2

[
−1

3
+
−1

81
+ 1 +

1

3

]
= 2

80

81
=

160

81

Exercice 3

1. Résoudre le système x− ay + z = 2
x+ (a+ 1)z = 3
x+ ay + 3z = 4

d'inconnue (x, y, z) ∈ R3, a désignant un paramètre réel.

(S) ⇐⇒

 x −ay +z = 2
x +(a+ 1)z = 3
x +ay +3z = 4

⇐⇒
L1

L2

L3 + L1

 x −ay +z = 2
x +(a+ 1)z = 3

2x +4z = 6

⇐⇒
L1

L2

L3 − 2L2

 x −ay +z = 2
x +(a+ 1)z = 3

(2− 2a)z = 0

Système triangulaire de pivots (2− 2a), 1, −a
� 1er cas : si a = 0
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(S) ⇐⇒

 x +z = 2
x +z = 3

2z = 0
⇐⇒

 x = 2
x = 3

z = 0

Système impossible S = ∅
� 2ème cas : a = 1

(S) ⇐⇒

 x −y +z = 2
x +2z = 3

0 = 0

⇐⇒ L1 − L2

L2

{
−y −z = −1

x +2z = 3

⇐⇒
{
y = −z + 1
x = −2z + 3

Donc S = {(−2z + 3, −z + 1, z), z ∈ R}
� a ∈ R\{0, 1} Aucun des pivots n'est nul. Donc on a un système de Cramer
(solution unique)

(S) ⇐⇒

 x −ay +z = 2
x +(a+ 1)z = 3

(2− 2a)z = 0

⇐⇒

 x −ay +z = 2
x +(a+ 1)z = 3

z = 0
car a 6= 1

⇐⇒

 x −ay = 2
x = 3

z = 0

⇐⇒
L1 − L2

L2

L3

 −ay = −1
x = 3

z = 0

⇐⇒
L1 − L2

L2

L3

 y = 1/a
x = 3
z = 0

Donc S = {3, 1/a, 0}

2. Calculer par la méthode du pivot, l'inverse de la matrice suivante :

A =

1 1 0
1 0 −1
0 1 −1



1 1 0
1 0 −1
0 1 −1

 =

1 0 0
0 1 0
0 0 1

 .A

⇐⇒
L1

L2 − L1

L3

1 1 0
0 −1 −1
0 1 −1

 =

 1 0 0
−1 1 0
0 0 1

 .A

⇐⇒
L1 + L2

L2

L3 + L2

1 0 −1
0 −1 −1
0 0 −2

 =

 0 1 0
−1 1 0
−1 1 1

 .A

⇐⇒
2L1 − L3

2L2 − L3

L3

2 0 0
0 −2 0
0 0 −2

 =

 1 1 −1
−1 1 −1
−1 1 1

 .A

⇐⇒
L1/2
L2/(−2)
L3/(−2)

1 0 0
0 1 0
0 0 1

 =

1/2 1/2 −1/2
1/2 −1/2 1/2
1/2 −1/2 −1/2

 .A

Donc A est inversible et A−1 =
1

2

1 1 −1
1 −1 1
1 −1 −1


Véri�cation : on fait le produit A.A−1 et on retrouve bien I3

Exercice 4

Soient an =

n∑
k=0

1

k!
et bn =

n∑
k=0

1

k!
+

1

n.n!

1. Montrer que (an) et (bn) sont adjacentes.

Il faut montrer que l'une est croissante, l'autre décroissante et que la di�érence
tend vers vers 0

� an+1 − an =
1

(n+ 1)!
≥ 0

La suite (an) est croissante

� bn = an +
1

n.n!
Donc

bn+1 − bn = an+1 − an +
1

(n+ 1).(n+ 1)!
− 1

n.n!

=
1

(n+ 1)!
+

1

(n+ 1)(n+ 1)!
− 1

n.n!

=
n+ 1

(n+ 1)(n+ 1)!
+

1

(n+ 1)(n+ 1)!
− 1

n.n!
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=
n+ 2

(n+ 1)(n+ 1)!
− 1

n.n!

=
n(n+ 2)

n(n+ 1)(n+ 1)!
− (n+ 1)2

(n+ 1)n.n!(n+ 1)

=
n(n+ 2)− (n+ 1)2

n(n+ 1)(n+ 1)!

=
(n2 + 2n)− (n2 + 2n+ 1)

n(n+ 1)(n+ 1)!

=
−1

n(n+ 1)(n+ 1)!
< 0

Donc la suite (bn) est décroissante

� bn − an =
1

n.n!
Donc lim

n→0
(bn − an) = 0

Conclusion : les suites (an) et (bn) sont adjacentes

2. Que peut-on en déduire ?

Donc les suites (an) et (bn) convergent vers une meme limite `

telle que ∀n ∈ N, an ≤ ` ≤ bn

Exercice 5

Pour n ∈ N , on pose un =

∫ 1

0

xn

1 + xn
dx et vn =

∫ 1

0

ln(1 + xn) dx

a) Calculer u0, u1, u2.

u0 =

∫ 1

0

1 dt = 1

u1 =

∫ 1

0

x

1 + x
dx =

∫ 1

0

1 + x− 1

1 + x
dx =

∫ 1

0

1− 1

1 + x
dx

=
[
x− ln |1 + x|

]1
0

= 1− ln 2

u2 =

∫ 1

0

x2

1 + x2
dx =

∫ 1

0

1 + x2 − 1

1 + x2
dx =

∫ 1

0

1− 1

1 + x2
dx

=
[
x− arctanx

]1
0

= [1− arctan(1)]− [0− arctan(0)] = 1− π/4

b) Étudier la monotonie de (un). Que peut-on en déduire ?

� un+1 − un =

∫ 1

0

xn+1

1 + xn+1
dx−

∫ 1

0

xn

1 + xn
dx

=

∫ 1

0

xn+1

1 + xn+1
− xn

1 + xn
dx

=

∫ 1

0

xn+1(1 + xn)− xn(1 + xn+1)

(1 + xn+1)(1 + xn)
dx

=

∫ 1

0

xn+1 + x2n+1 − xn − x2n+1

(1 + xn+1)(1 + xn)
dx

=

∫ 1

0

xn+1 − xn

(1 + xn+1)(1 + xn)
dx

=

∫ 1

0

xn(x− 1)

(1 + xn+1)(1 + xn)
dx

Or, pour x ∈ [0, 1] x− 1 < 0 et
xn

(1 + xn+1)(1 + xn)
≥ 0,

⇒ xn(x− 1)

(1 + xn+1)(1 + xn)
≤ 0

Et 0 < 1 (Bornes dans le bon sens)

⇒ un+1 − un ≤ 0

La suites un est décroissante

� De plus, pour x ∈ [0, 1],
xn

1 + xn
≥ 0 ⇒

∫ 1

0

xn

1 + xn
dx ≥ 0 car 0 < 1

Donc ∀n ∈ N?un ≥ 0

� La suite (un) est donc décroissante et minorée par 0 donc elle converge vers
une limite ` (inconnue) telle que ∀n ∈ N, 0 ≤ ` ≤ un

c) Encadrer un et en déduire que lim
n→+∞

un = 0

Pour x ∈ [0, 1]

0 ≤ xn ≤ 1

⇒ 1 ≤ 1 + xn ≤ 2 ( tout est positif)

⇒ 0 ≤ 1

1 + xn
≤ 1

2

⇒ 0 ≤ xn

1 + xn
≤ 1

2
xn

⇒ 0 ≤
∫ 1

0

xn

1 + xn
dx ≤

∫ 1

0

1

2
xn dx car 0 ≤ 1

⇒ 0 ≤ un ≤
1

2

[
xn+1

n+ 1

]1
0

23 janvier 2026 17:24 5/ 8 "2026_PCSI DS 05 (2026_01_23)"



2025-26 PCSI DS 05 Corrigé

⇒ 0 ≤ un ≤
1

2(n+ 1)

Or, quand n→ +∞, 1

2(n+ 1)
→ 0

Donc, par encadrement lim
n→+∞

un = 0

d) En faisant une intégration par partie, déterminer une relation entre un et vn

un =

∫ 1

0

xn

1 + xn
dx et vn =

∫ 1

0

ln(1 + xn) dx

Posons

 u(x) = ln(1 + xn) u′(x) =
nxn−1

1 + xn
v′(x) = 1 v(x) = x

avec u, v C1 sur [0, 1]. Donc par intégration par parties :

vn = [x ln(1 + xn)]
1
0 −

∫ 1

0

x
nxn−1

1 + xn
dx

= ln 2− n
∫ 1

0

xn

1 + xn
dx

= ln 2− n.un

e) Démontrer que pour tout x ≥ 1, lnx ≤ x− 1

Etudions f(x) = lnx − x + 1 sur [1,+∞[ f est continue dérivable

f ′(x) =
1

x
− 1 =

1− x
x

< 0 pour x > 1

Donc f est décroissante sur [1,+∞[ avec f(1) = 0

Donc ∀x ≥ 1, f(x) ≤ 0 ⇒ lnx ≤ x− 1

f) En déduire lim
n→∞

vn

Pour x ∈ [0, 1], 1 + xn ≥ 1 ⇒ ln(1 + xn) ≤ (1 + xn)− 1 = xn d'aprèes ce
qui précde

De plus 1 + xn ≥ 1 ⇒ ln(1 + xn) ≥ 0

D'où 0 ≤ ln(1 + xn) ≤ xn

⇒ 0 ≤
∫ 1

0

ln(1 + xn) dx ≤
∫ 1

0

xn dx

⇒ 0 ≤ vn ≤
1

n+ 1
1 Comme

1

n+ 1
→ 0 quand n→ +∞

Par encadrement lim
n→∞

vn

g) En déduire un équivalent simple de un

Or vn = ln 2− n.un
⇒ lim

n→+∞
n.un = ln 2

⇒ n.un ∼ ln 2

⇒ un ∼
ln 2

n

Exercice 6 (Étude d'une bijection)

On considère la fonction f dé�nie par la relation f(x) =
√
x e−x/2

1. a) Sur quels intervalles la fonction f est-elle dé�nie ? continue ? dérivable ?
Préciser la tangente à la courbe représentative de f au point d'abscisse 0.

� x 7→
√
x est dé�nie et continue sur [0,+∞[, dérivable sur ]0, +∞[

x 7→ e−x/2 est dé�nie, continue et dérivable sur R
Donc f est dé�nie et continue sur [0, +∞[
et f est dérivable sur ]0, +∞[

� En 0, étudions le taux d'accroissment :

f(x)− f(0)

x− 0
=

√
x e−x/2

x
=

e−x/2√
x

Donc lim
x→0+

f(x)− f(0)

x− 0
= +∞

Donc f n'est pas dérivable en 0 et Cf admet une tangente verticale.

b) Dresser le tableau de variation de f .

Pour x > 0,

f ′(x) = (
√
x)′ (e−x/2) + (

√
x) (e−x/2)′

=
1

2
√
x

(e−x/2) +
√
x(−1

2
e−x/2)

=
e−x/2

2
√
x

(1− x)

Donc f ′(x) ≥ 0 ⇐⇒ 1− x ≥ 0 ⇐⇒ 0 ≤ x ≤ 1

f(0) = 0, f(1) = e−1/2 =
1√
e

lim
x→+∞

f(x) = 0 (croissance comparé)
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x 0 1 +∞
f ′(x) + 0 −

1/
√

e
f ↗ ↘

0 0

e = 2, 7 ⇒
√

e '
√

2, 7 ' 1, 7
1√
e
' 1

1, 7
' 0, 6

c) Justi�er que la courbe représentative de f présente une in�exion en un
point d'abscisse α à préciser. (C'est-à-dire une valeur pour laquelle la dérivée
seconde f ′′ de f s'annule)

f ′(x) =
e−x/2

2
√
x

(1− x) =
e−x/2

2
(

1√
x
−
√
x) =

e−x/2

2
(x−1/2 − x1/2)

⇒ f ′′(x) = (
e−x/2

2
)′.(x−1/2 − x1/2) +

e−x/2

2
(x−1/2 − x1/2)′

= (
−e−x/2

4
).(x−1/2 − x1/2) +

e−x/2

2
(
−1

2
x−3/2 − 1

2
x−1/2)

=
e−x/2

4
.
(
(−x−1/2 + x1/2) + (−x−3/2 − x−1/2)

)
=

e−x/2

4
.x−3/2

(
− x+ x2 − 1− x

)
=

e−x/2

4.x
√
x

(
x2 − 2x− 1

)
f ′′(x) = 0 ⇐⇒ x2 − 2x− 1 = 0

∆ = 8 x1 =
2 + 2

√
2

2
= 1 +

√
2 > 0 x2 = 1 +

√
2 < 0

Donc f ′′ s'annule en α = 1 +
√

2

avec f(α) =
√

1 +
√

2 e−(1+
√
2)/2

(Valeur absolument impossible à calculer.)

d) Déterminer l'abscisse du point d'intersection de la tangente à f en α avec
l'axe (Ox) .

La tangente Cf en α a pour équation :

y = f ′(α)(x− α) + f(α)

Elle coupe l'axe (Ox) pour y = 0 ⇒ f ′(α)(x− α) + f(α) = 0

⇒ x = − f(α)

f ′(α)
+ α = −

√
α e−α/2

e−α/2

2
√
α

(1− α)

+ α

= −
√
α

1− α
2
√
α

+ α = − 2α

1− α
+ α

= −2(1 +
√

2)

−
√

2
+ (1 +

√
2) = +

√
2(1 +

√
2) + (1 +

√
2)

= 3 + 2
√

2 ' 3 + 2 · 1, 4 = 5, 8

e) Représenter f et sa tangente en α en prenant des unités égales à 2 cm en
abscisse et 10 cm en ordonnée.

2. a) Montrer que f réalise une bijection de l'intervalle [0, 1] vers l'intervalle[
0, 1/

√
e
]
. On note alors ϕ l'application réciproque correspondante.

f est continue strictement croissante sur [0, 1] donc f établit une bijection
de I = [0, 1] sur f(I) = [f(0), f(1)] =

[
0, 1/

√
e
]

Et sa réciproque ϕ :
[
0, 1/

√
e
]
→ [0, 1] est aussi une bijection continue

strictement décroissante

b) Dresser le tableau de variation de ϕ

x 0 1/
√

e

1

ϕ ↗
0

c) Justi�er que ϕ est dérivable sur
]
0, 1/

√
e
[

Soit x = ϕ(y) avec y ∈
]
0, 1/

√
e
[

On a alors x ∈]0, 1[
Donc f est dérivable en x et f ′(x) 6= 0

Donc ϕ est dérivable en y et ϕ′(y) =
1

f ′(x)
=

1

(f ′ ◦ ϕ)(x)

Conclusion : ϕ est bien dérivable sur
]
0, 1/

√
e
[

d) Étudier la dérivabilité de ϕ en 0 et en 1/
√

e

Le théorème précédent ne nous dit rien sur la dérivabilité de ϕ en 0 et en
1/
√

e
Il faut donc revenir au binôme de Newton.
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Soit à nouveau x = ϕ(y) avec y ∈
]
0, 1/

√
e
[

et x ∈]0, 1[

� En 0

ϕ(y)− ϕ(0)

y − 0
=

x− 0

f(x)− 0
=

x− 0

f(x)− 0
=

x√
x e−x/2

=
√
x ex/2

Quand y → 0,

x = ϕ(y)→ ϕ(0) = 0 car ϕ est continue en 0

⇒
√
x ex/2 → 0

⇒ lim
y→0

ϕ(y)− ϕ(0)

y − 0
= 0

ϕ est donc dérivable en 0 et ϕ′(0) = 0 (Cf admet une tangente
horizontale en 0)

� En 1/
√

e

On a 1/
√

e = f(1) et ϕ(1/
√

e) = 1

ϕ(y)− ϕ(1/
√

e)

y − 1/
√

e
=

x− 1

f(x)− f(1)

Quand y → 1/
√

e

x = ϕ(y)→ 1 car ϕ est continue en 1/
√

e

⇒ f(x)− f(1)

x− 1
→ f ′(1) = 0 car f est dérivable en 1

⇒ x− 1

f(x)− f(1)
→∞

Donc ϕ n'est pas dérivable en 1/
√

e mais la courbe de ϕ y admet une
tangente verticale.

e) Déterminer un équivalent simple de ϕ au voisinage de 0.

ϕ(y) = x avec f(x) = y =
√
xe−x/2

Quand x→ 0,

e−x/2 → 1 ⇒ y ∼
√
x ⇒ x ∼ y2

⇒ ϕ(y) ∼ y2 en 0

3. a) On admet que f réalise une bijection de l'intervalle [1, +∞[ vers un intervalle
J ′.
Donner cet intervalle J ′

f est continue strictement décroissante sur I ′ = [1,+∞[

donc J ′ = g(I ′) =] lim
+∞

f, f(1)] =
]
0, 1/

√
e
]

b) On note ψ l'application réciproque correspondante.
Dresser le tableau de variation de ψ.

x 0 1/
√

e

+∞
ψ ↘

1

c) Déterminer un équivalent simple de ψ au voisinage de 0.

Soit y = f(x) avec y ∈]0, 1/
√

e[ et x ∈]1, +∞[
Quand y → 0, x→ +∞ On a : y =

√
x e−x/2

⇒ ln y =
1

2
lnx− x

2
∼ −x

2
car x→ +∞ et lnx = o(x) en +∞

⇒ ln y ∼ −x/2 ⇒ x ∼ −2 ln y ⇒ ψ(y) = x ∼
y→0
−2 ln y

4. On considère l'application composée g = ϕ ◦ ψ−1
Donner son ensemble de dé�nition
Dresser le tableau de variation de g (avec les limites)

ψ :
]
0, 1/

√
e
]
→ [1, +∞[ est continue strictement décroissante

⇒ ψ−1 : [1, +∞[→
]
0, 1/

√
e
]

est continue strictement décroissante

ϕ :
]
0, 1/

√
e
]
→]0, 1] est continue strictement croissante

Donc g : [1, +∞[
ψ−1

−→
]
0, 1/

√
e
] ϕ−→]0, 1]

D'où : g est dé�nie sur [1, +∞[

et g : [1, +∞[→]0, 1] est une fonction continue strictement décroissante :

x 1 +∞
1

g ↘
0
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