
Flexion d'un spaghetto

Un spaghetto de diamètre d et de longueur L, reposant sur ses extrémités, fléchit sous l'action d'une force F perpendiculaire appliquée en son milieu, comme indiqué sur le schéma ci-dessous. On note g le champ de pesanteur terrestre et on prend $g = 9.81 \,\mathrm{m \, s^{-2}}$.

D'après un modèle théorique, la valeur maximale du déplacement du milieu du spaghetto, y, appelée « flèche », varie selon la loi de puissance suivante :

$$y = KF^{\alpha}L^{\beta}d^{\delta}E^{\gamma}$$

où α , β , δ et γ sont des entiers relatifs; E représente une propriété intrinsèque du matériau exprimée en pascal (1 Pa = 1 N m⁻²) et K est une constante adimensionnée.

On précise la constante $K=\frac{4}{3\pi}$, le diamètre du spaghetto $d=1,90\,\mathrm{mm}$ et le champ de pesanteur $g=9,81\,\mathrm{m\,s^{-2}}$.

- 1. En vous appuyant sur une analyse dimensionnelle, déterminer deux relations entre les exposants α , β , δ et γ . Peut-on résoudre ce système?
- 2. Pour compléter l'analyse dimensionnelle, une expérience est réalisée en laboratoire : on suspend une masse m au milieu du spaghetto et on mesure la flèche y. Les résultats expérimentaux sont résumés dans les tableaux ci-dessous :

Pour un spaghetto de longueur $L = 20 \,\mathrm{cm}$:

masse m	0 g	$2,0\mathrm{g}$	$12,0\mathrm{g}$	$22,0\mathrm{g}$	$31,9\mathrm{g}$
flèche y	$0\mathrm{cm}$	$0,30\mathrm{cm}$	$1,40\mathrm{cm}$	$2,\!60\mathrm{cm}$	$4,45\mathrm{cm}$

Pour un spaghetto de longueur $L=15\,\mathrm{cm}$:

masse m	0 g	2,0 g	12,0 g	22,0 g	31,9 g	$52,0\mathrm{g}$
flèche y	$0\mathrm{cm}$	$0.15\mathrm{cm}$	$0,60\mathrm{cm}$	$1,10\mathrm{cm}$	$1,75\mathrm{cm}$	$3{,}05\mathrm{cm}$

- 2.a. Quelle est la relation entre la masse m et la force F appliquée?
- 2.b. On donne ci-dessous des représentations graphiques de y en fonction de F^{α} pour différentes valeurs de α et pour chacun des spaghetti.

Choisir la valeur la plus adaptée de α parmi celles suggérées. Justifier.

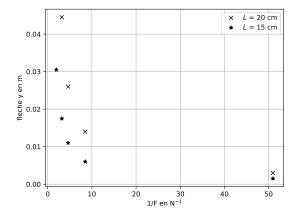
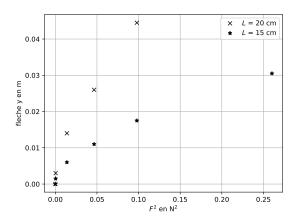



Figure 1 : Évolution de y en fonction de $\frac{1}{F}$

Figure 2 : Évolution de y en fonction de F

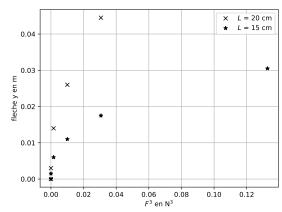


Figure 3 : Évolution de y en fonction de F^2

Figure 4 : Évolution de y en fonction de F^3

2.c. Déterminer la pente de la droite passant au plus près du nuage de points dans le cas choisi et pour chacun des spaghetti. En déduire la valeur de β .

On précise que si $A = B^n$ alors $n = \frac{\ln(A)}{\ln(B)}$.

- 2.d. En déduire les valeurs de γ et de $\delta.$
- 2.e. Donner l'expression finale de y.
- 2.f. Déterminer la valeur numérique moyenne de E obtenue à l'aide de ces deux expériences en GPa.