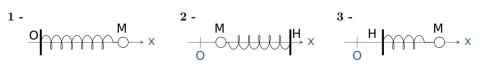
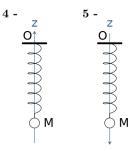
TD Oscillateur harmonique

1 Forces du ressort

Indiquer l'expression de la force de rappel du ressort dans ces différentes situations, en fonction de des caractéristiques k et l_0 du ressort, de la position x ou z du point M (repérée par rapport à l'origine en O), si nécessaire de la coordonnée x_H du point H, et de \vec{e}_x ou \vec{e}_z .





Rép:
$$1: \vec{F} = -k(x-l_0)\vec{e}_x$$
; $2: \vec{F} = k(x_H-x-l_0)\vec{e}_x$; $3: \vec{F} = -k(x-x_H-l_0)\vec{e}_x$; $4: \vec{F} = k(-z-l_0)\vec{e}_z$; $5: \vec{F} = -k(z-l_0)\vec{e}_z$;

2 Système masse-ressort vertical

On considère une masse m attachée à un ressort de longueur à vide l_0 et de constante de raideur k. Le tout est vertical. On négligera tout frottement.

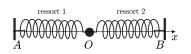
- 1 Déterminer l'équation différentielle suivie par la position x(t).
- 2 Quelle est l'expression de la position d'équilibre $x_{\text{éq}}$?
- 3 Réécrire l'équation en faisant d'abord intervenir $\omega_0 = \sqrt{k/m}$ et $x_{\rm \acute{e}q}$ seulement (et x et \ddot{x} évidemment), puis la nouvelle variable $u = x x_{\rm \acute{e}q}$.
- 4 La résoudre. On considèrera qu'à l'instant initial la masse est en $x=x_{\rm \acute{e}q}+\delta$ avec δ une longueur, et on lache la masse de cette position sans vitesse initiale.
- 5 Tracer l'allure de la solution. Quelle est la période des oscillations?
- 6 Donner l'expression de l'énergie totale du système, en fonction notamment de x(t) et $\dot{x}(t)$. Utiliser le fait qu'elle est constante pour retrouver l'équation du mouvement.

Rép:
$$\ddot{x} + \frac{k}{m}(x - l_0) = g; x_{eq} = l_0 + \frac{mg}{k}; \ddot{u} + \omega_0^2 u = 0, \omega_0 = \sqrt{\frac{k}{m}}; u = \delta \cos \omega_0 t; T = 2\pi \sqrt{\frac{m}{k}}$$

3 Système à deux ressorts

Un mobile supposé ponctuel de masse m est astreint à glisser le long d'une tige horizontale de direction Ox . Ce mobile est relié par deux ressorts linéaires à deux points fixes A et B.

Les deux ressorts sont identiques (constante de raideur k, longueur à vide l_0). On néglige tout frottement et le référentiel d'étude est galiléen. Dans la position d'équilibre, les longueurs des ressorts sont identiques et valent $l_{\text{éq}}$, et le mobile est en O d'abscisse x=0. À l'instant initial, le mobile est abandonné sans vitesse d'une position x_0 .



- 1 Établir l'équation différentielle dont x(t) est solution.
- 2 Montrer que le système constitue un oscillateur harmonique dont on précisera la pulsation ω_0 et la période T_0 .
- 3 Donner l'expression de x(t) en tenant compte des conditions initiales.
- 4 Donner les expressions de l'énergie potentielle élastique des deux ressorts, de l'énergie cinétique du mobile, et de l'énergie mécanique totale $E_m(t)$ en fonction de k, x_0, ω_0, t et éventuellement l_0 et $l_{\text{éq}}$. Par convention l'origine de l'énergie potentielle correspondra à la position d'équilibre : $E_p = 0$ pour x = 0.

Rép:
$$\ddot{x} + \omega_0^2 x = 0, \omega_0 = \sqrt{\frac{2k}{m}}; x = x_0 \cos \omega_0 t; E_m = kx_0^2$$

4 Vibration d'une molécule de HCl

La fréquence de vibration de la molécule de chlorure d'hydrogène HCl est mesurée par spectroscopie comme valant $f=8,5\times10^{13}$ Hz. On aborde dans cet exercice un premier modèle simple de la molécule, décrite comme un atome d'hydrogène mobile relié à un atome de chlore fixe. L'interaction entre les deux atomes est modélisée par un pseudo-ressort de raideur k.

Données : masses molaires $M_{\rm H}=1,0~{\rm g~mol}^{-1}$ et $M_{\rm Cl}=35,5~{\rm g~mol}^{-1}$, constante d'Avogadro $N_A=6,0\times10^{23}~{\rm mol}^{-1}$.

- 1 Pourquoi est-il raisonnable de supposer l'atome de chlore fixe?
- 2 Calculer la raideur k.
- 3 On admet (mécanique quantique) que l'énergie de la molécule est égale à $\frac{1}{2}hf$ où $h=6,62\times 10^{-34}$ J s est la constante de Planck. La référence de l'énergie potentielle est prise nulle lorsque le ressort est à l'équilibre immobile. Calculer la vitesse maximale de l'atome d'hydrogène.
- 4 Calculer l'amplitude de son mouvement. Comparer à la longueur $d=127\mathrm{pm}$ tabulée de la liaison H Cl.

Rép :
$$k=4\pi^2f^2\frac{M_H}{N_A}; v_{max}=\sqrt{\frac{hfN_A}{M_H}}; x_{max}=\sqrt{\frac{hf}{k}}\ll d$$

[5] Masses et ressorts à la verticale (Oral CCP)

- 1 On considère le système ci-contre où k_i et ℓ_{0i} sont les raideurs et longueurs à vide des ressorts. Déterminer les allongements $\Delta \ell_1$ et $\Delta \ell_2$ à l'équilibre.
- 2 Établir les équations différentielles vérifiées par les écarts z_1 et z_2 aux positions d'équilibre.
- 3 La masse m_2 est maintenant supposée maintenue dans sa position d'équilibre. La masse m_1 est alors déplacée de Z_0 de sa position d'équilibre et lâchée sans vitesse initiale. Trouver l'équation $z_1(t)$ régissant le mouvement de m_1 .

$$\mathbf{R\acute{e}p}: \Delta\ell_{1,\acute{eq}} = \tfrac{(m_1+m_2)g}{k_1}; \Delta\ell_{2,\acute{eq}} = \tfrac{m_2g}{k_2}; \tfrac{\mathrm{d}^2z_1}{\mathrm{d}t^2} + \tfrac{k_1+k_2}{m_1}z_1 = \tfrac{k_2}{m_1}z_2; \tfrac{\mathrm{d}^2z_2}{\mathrm{d}t^2} + \tfrac{k_2}{m_2}z_2 = \tfrac{k_2}{m_2}z_1; z_1(t) = Z_0\cos\left(\omega_0t\right)$$

