# Mesure de distances à l'aide d'un viseur à frontale fixe (VFF)

#### Introduction

Les méthodes vues dans le TP de focométrie ne conviennent pas pour les lentilles divergentes, puisqu'un objet réel n'a jamais d'image réelle.

Une détermination approchée de la distance focale peut cependant s'imaginer en accolant la lentille divergente avec une lentille convergente de distance focale connue de manière à ce que l'ensemble soit convergent.

Q1 $\stackrel{\frown}{\blacksquare}$  Montrer en appliquant successivement la formule de conjugaison des deux lentilles accolées, que l'ensemble se comporte comme une lentille unique de vergence  $V_1 + V_2$ 

Par une des méthodes précédentes, on évaluerait alors la distance focale de l'ensemble et on en déduit la distance focale de la lentille divergente. Nous allons utiliser une autre méthode, en utilisant un viseur à frontale fixe et la relation de conjugaison de Descartes.

#### Compétences exigibles :

- Mettre en oeuvre une mesure de longueur par déplacement du viseur entre deux positions.
- Mesurer une longueur sur un banc d'optique.
- Éclairer un objet de manière adaptée.
- Optimiser la qualité d'une image (alignement, limitation des aberrations. . .).
- Procéder à l'évaluation d'une incertitude-type par une approche statistique (évaluation de type A).
- Capacité numérique : simuler, à l'aide d'un langage de programmation ou d'un tableur, un processus aléatoire permettant de caractériser la variabilité de la valeur d'une grandeur composée.

# I. Mesure grâce à la définition du foyer image

## 1. Principe

Un viseur à frontale fixe, par construction, ne fait une image nette que d'objets à une distance fixe D de lui (autrement dit, sa profondeur de champ est très faible). Il permet donc de repérer la position d'une image virtuelle : si on voit nette cette image virtuelle à travers le viseur, c'est qu'elle se situe à D du viseur.

D'où une première méthode de mesure : le collimateur C émet un faisceau de lumière parallèle qui converge au foyer F' de L. Le viseur V de distance à frontale fixe pointe d'abord F' puis la face de L, la mesure de la translation nécessaire entre ces deux opérations fournit la distance focale f'.

## 2. Réglage du viseur à frontale fixe (VFF)

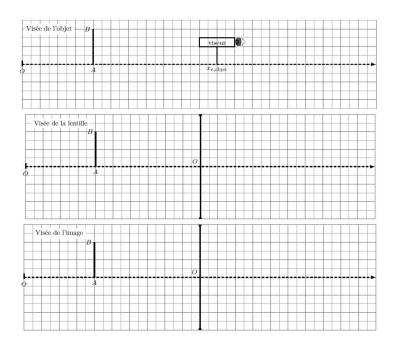
 $\underline{1^{\rm er}}$  réglage : régler la position de l'oculaire par rapport au réticule, c'est à dire ajuster  $\overline{d}$  avec la bague de l'oculaire. Ce règlage doit permettre d'observer le réticule net sans accommodation.

- $\rightarrow$  Régler le tirage entre le réticule et l'oculaire afin de voir le réticule net à travers l'oculaire.
- $\rightarrow$  Puis pour être sûr de placer le réticule dans le plan focal objet de l'oculaire, éloigner au maximum l'oculaire du réticule, tout en voyant le réticule net. Fermez l'oeil (il "désacommode") et rouvrez le, vous devez ne pas réaccomoder. Ce réglage est un réglage personnel, qui dépend de votre vue.

Une fois l'oculaire réglé, les éléments que l'on peut viser nettement sont tels que leurs images par l'objectif sont dans le plan du réticule.

 $\underline{2^{\mathrm{ème}}}$  réglage : Obtention du VFF : règler la distance objectif-réticule afin de pouvoir viser des objets situés à une vingtaine de centimètres du viseur. (ajuster D avec la bague de l'objectif)

# Réticule oeil


### 3. Mesures de distances à l'aide d'un viseur à frontale fixe

Un viseur à frontale fixe permet de mesurer la distance entre deux éléments, en réalisant deux pointés. Il ne permet pas de déterminer la position d'un élément.

Vous souhaitez mesurer la distance entre deux éléments  $E_1$  et  $E_2$  sur le banc d'optique :

- 1<sup>ère</sup> visée : Viser  $E_1$ , pour cela déplacer le viseur de sorte à voir l'élément  $E_1$  net à travers le viseur. Noter la position du viseur  $X_{\text{viseur}}$  (vous lisez bêtement la valeur de la position du viseur sur le banc d'optique).

| - 2ème visée : Viser $E_2$ , c'est-à-dire déplacer le viseur de sorte à voir l'élément $E_2$ net. Noter la position du viseur $x_{\text{viseur },2}$ (vous lisez bêtement la valeur de la position du viseur sur le banc d'optique). Distance : En déduire la distance entre $E_1$ et $E_2$ en calculant la différence entre les deux positions du viseur notées précédemment : $E_1E_2=X_{\text{viseur },2}-X_{\text{viseur },1}$                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q2 Placer un objet (F) sur le banc, le déplacer de 10 cm, effectuer les deux visées : la mesure correspond-elle au déplacement imposé?                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q3 Effectuer la mesure décrite plus haut. On règlera transitoirement le viseur à l'infini pour s'assurer que le colimateur délivre un faisceau parallèle (cf TP lunette astronomique). Faire un schéma de vos manipulations et mesures ci dessous.                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| II. Mesure de la distance focale par la relation de conjugaison de la lentille                                                                                                                                                                                                                                                                                                                                                                             |
| 1. Protocole                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| On souhaite mesurer la distance focale de la lentille divergente avec la relation de conjugaison : $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'} \Leftrightarrow f' = \frac{\overline{OA} \cdot \overline{OA'}}{\overline{OA} - \overline{OA'}}$ Q4 Pour une position de l'objet et de la lentille donnée, combien de positions du viseur doit-on noter pour avoir $\overline{OA}$ et $\overline{OA}$ ? Que visez-vous à chaque fois? |
| Que visez-vous a chaque lois:                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q5	Écrire le protocole permettant de mesurer la distance focale de la lentille. Pour illustrer le protocole, on complètera les schémas ci-dessous.                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



#### 2. Partie expérimentale

Q6 : Relever la position du viseur lors de la visée de l'objet.

Q7 : Relever dans un tableau les positions du viseur lors de la visée de la lentille puis de l'image, pour chacune des positions différentes de la lentille par rapport à l'objet.

Positions du viseur lors des visées de la lentille et de l'image :

| x_lentille |  |  |  |  |
|------------|--|--|--|--|
| x_image    |  |  |  |  |

#### Exploitation des résultats 3.

- Ouvrir le fichier Python viseur dans cdp, repertoire informatique (cliquez sur ⊳ à côté...).
- Complétez les premières lignes avec les valeurs que vous avez relevées précédemment.

| Q8   | : Complétez le | es lignes sui | vantes pour | calculer le | es tableaux | des val | eurs de $\bar{c}$ | $\overline{OA}$ et $\overline{OA}$ | 7. Reportez | sur votre | compte-rendu | ιles |
|------|----------------|---------------|-------------|-------------|-------------|---------|-------------------|------------------------------------|-------------|-----------|--------------|------|
| form | ules entrées.  |               |             |             |             |         |                   |                                    |             |           |              |      |
|      |                |               |             |             |             |         |                   |                                    |             |           |              |      |

Q9: Complétez la ligne suivante pour calculer le tableau des valeurs de f'. Reportez sur votre compte-rendu la formule entrée.

Lancer le programme, visualiser l'histogramme des valeurs de f' obtenues, déterminer la valeur moyenne  $\overline{f'} = \frac{1}{N} \sum_{i=1}^{N} f'_i$  et l'écarttype  $\sigma(f') = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(f'_i - \overline{f'}\right)^2}$  de la série de mesures. Reportez les valeurs ci-dessous (on gardera les chiffres affichés)

 $\overline{\mathrm{Q}10}$ : En déduire (voir fiche incertitudes) l'incertitude-type sur la moyenne des f', puis donner le résultat de l'expérience sous la  $\overline{\text{forme}}: f' = \dots, u(f') = \dots, u(f') = \dots$  On gardera deux chiffres significatifs pour u(f').

| Q11 : Déterminer l'écart normalisé avec la donnée constructeur (incertitude-type inconnue) et commenter.                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
| III. Mise en place du protocole avec une mesure unique                                                                                                                          |
| 1. Expérience                                                                                                                                                                   |
| Q12 Sur une seule mesure, noter les                                                                                                                                             |
| - Positions extrêmes permettant la visée nette de l'objet :                                                                                                                     |
| - Positions extrêmes permettant la visée nette de la lentille :                                                                                                                 |
| - Positions extrêmes permettant la visée nette de l'image :                                                                                                                     |
| 2. Exploitation des résultats                                                                                                                                                   |
| L'évaluation de l'incertitude sur la mesure unique de $f$ ' se fait ici en utilisant une simulation Monte-Carlo. Adaptez pour cela le programme monte-carlo disponible sur cdp. |
| Q14]: Donner le résultat de la mesure sous la forme : $f' = \underline{\qquad}$ ; $u(f') = \underline{\qquad}$ On gardera deux chiffres significatifs pour $u(f')$ .            |
| Q15 : Déterminer l'écart normalisé avec le résultat de l'expérience précédente et commenter.                                                                                    |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |