(cuitare electrique (Centrale 2024) 11 En BF, schema equivalent et () \ = e ( Idem en UF: et () () 1 0=0 => Park bas. 21 DT=> = Ze = 1 = R+ZL+Ze 1+RZL+Ze = 1- WZC+JWRC = H(jw) 3) Pan identification,  $H = \frac{Ho}{1 - \frac{W^2}{W^2} + \frac{1}{2} \frac{W}{QW_0}}$  avec  $M_0 = 1$ ,  $W_0 = \frac{1}{V_{IC}}$ et RC = Los => Q= Los 4) On a résonance si Hadmet 1 max, or H = 1 an pose  $x = \frac{\omega}{\omega_0}$ , en étudie  $(1-x^2)^2 + \frac{z^2}{Q^2} = f(x) \cdot (1-\frac{\omega^2}{\omega_0})^2 + \frac{\omega^2}{Q^2\omega_0^2}$ Hadnet 1 max si fausi on calcule.  $f'(x) = 2(-2x)(1-x^2) + \frac{2x}{0} \Rightarrow f'(x) = 0 \Leftrightarrow -2(1-x^2) + \frac{1}{Q} = 0$  $\Rightarrow x^2 = 1 - \frac{1}{2Q^2} \Rightarrow x = \sqrt{1 - \frac{1}{2Q^2}} \quad (x \text{ forcement } x)$ Sol Wn= wo 1-1 , si 1-202>000 Q>1 5). en BF: H n 4 => asymptote GdB=0 · en KF: Hr - 1 => asymptoste ad3= - 40 log (w · resonance en w= w, Gold wo log w.

6) an mesure (osullo ou muellimetre) les amplitudes de s et e à différentes pulsations => H(w) = GdB(w) I On n'a pas accès à e(t) 1) Schema eg en statique: et (C) Fr1 s Alors le gain en statique vaux  $\frac{A}{e} = \frac{n}{n+1} = Ho$ si r. 1. on 1 le join à bouses frequences -> possulimeté de volume I) an a  $\frac{d}{Z} = \frac{1}{2} + \frac{1}{2} = j(\omega + \frac{1}{R+jl\omega}) = \frac{1-L(\omega^2+jk\omega)}{R+jl\omega}$ = R+jlw 1-lcw2+jRcw (4) 10)  $\frac{1}{\sqrt{2}}$  2DTension:  $\frac{1}{\sqrt{2}}$   $\frac$ Done Z=2 VZ 11 (1) Wis ZNR. On lit à BF son les 2 graphes: RFender 2 1.52 Rdyna & 0.72 (Z=2 Uz) => RFender = 15 Er Rdynar = 7002 121 Alors, en "enlevant"C, Z=R+jlw=>[2]=R+lw² Donc R2+12w2= 2 | Uz | => | L= 1 | (2|2)2-R2 |

an a à 1 kHz 
$$\frac{U_{z}}{U_{z}} = \frac{1}{1.5(0 \text{ yra})}$$

D'où Lender =  $\frac{1}{2.57 \times 10^{3}} \sqrt{(6 \cdot 10^{4})^{2} - (1.5 \cdot 10^{4})^{2}} = 9 \text{ H}$ 

Ldyna =  $\frac{1}{27 \cdot 10^{3}} \sqrt{(1.5 \cdot 10^{4})^{2} - (7 \cdot 10^{3})^{2}} = 2 \text{ H}$ 

131 an a  $Z = \frac{R(1 + i) \cdot RQ}{(1 + i) \cdot QQ} = \frac{1}{QQQ} =$ 

On voit ici que Z'est max pour  $W=W_0$  (denomination minimal), soit pru  $W=\frac{1}{\sqrt{12}}$ . On a donc  $C=\frac{1}{4\pi^2L_0^2}$  avec fo frequence de résonance du micro.

AN: Fender: fox3kky => Cx 10-12 F Dyna fox25kky => C=610-11 F

14) le spectre "naiment" audille s'arrête à fokty (1 kHz est déja aigu) - On voit sur la condre que le Fender rocksonne dans les aigus, le Dyna dans les ultra sons, dans les aiges (1-10 kHz) il a 1 combe de réponse en denous de celle du Fender: il sonne mins aigü,

## Rapport du Jury:

- Q1., Q2. et Q3. Ces questions sont bien traitées par la majorité des candidats. Il est toutefois à noter quelques contradictions entre la première et les deux suivantes.
- Q4. De nombreuses confusions sont relevées ici entre le caractère oscillatoire de la réponse indicielle d'un filtre du second ordre et la condition de résonance de ce dernier. Le jury rappelle que la recherche d'un extremum d'une fonction est associée à la recherche de l'annulation de sa dérivée.
- Q5. Peu de courbes sont demandées dans cette épreuve. Comme toute courbe, il est indispensable de commencer par nommer les axes. Les candidats ne doivent pas oublier que pour un diagramme de Bode en gain, le gain en décibels est porté en ordonnées. Rappelons aussi qu'il est important de ne pas confondre asymptotes et courbe.
- Q6. et Q7. Ces questions offrent aux candidats les plus habiles sur le champ expérimental de s'exprimer : si certains le font de fort belle manière, d'autres se perdent dans des développements hors sujet.
- Q8. La notion de «gain statique» perd bien des candidats, alors que la sémantique de l'expression suffit à répondre rapidement et efficacement. Raisonner sur le schéma équivalent du circuit dans la limite des très basses fréquences est suffisant et surtout très efficace.
- Q10. Cette question ne présente aucune difficulté. Toutefois, le jury tient à rappeler que lorsque Z est demandé, les candidats ne doivent pas s'arrêter à l'expression de 1/Z.
- Q10. Le résultat est intégralement donné et il s'agit donc de le justifier et non simplement de le recopier.
- Q11., Q12. et Q13. Ces questions, qui mêlent approximations puis applications numériques nécessitent tout d'abord une bonne analyse des expressions, puis une exploitation claire des données. Il va sans dire que toute application numérique s'accompagne d'une unité, et que se contenter de l'unité « S.I. » ne suffit pas!
- Q14. Si cette question peut paraître déstabilisante, il convient de ne pas y passer trop de temps, mais le jury apprécie que les candidats sachent distinguer d'eux-même les sons audibles et les ultrasons : il a rarement l'occasion de le lire.