
Filtrage	numérique
Capacité	numérique	:	simuler	l’action	d’un	filtre	sur	un	signal	périodique	dont	le	spectre	est	fourni.	Mettre	en	évidence
l’influence	des	caractéristiques	du	filtre	sur	l’opération	de	filtrage.

1)	Outils,	exemples
Calcul	d'un	signal	à	partir	de	ses	harmoniques
Le	signal	périodique,	de	fréquence	fondamentale	f	,	est	défini	par	les	amplitudes	de	ses	harmoniques	(Ak	pour
k = 0, 1, …P	)	et	par	leur	phase	à	l’origine	(φk	)	:

e(t) = P∑ k=0Akcos(2πkft + φk)

où	P	est	le	rang	de	l’harmonique	de	plus	haute	fréquence,	s’il	existe,	ou	bien	le	rang	auquel	on	décide	de	stopper	la
somme	pour	en	donner	une	approximation.

La	fonction	signal	définie	ci-dessous	effectue	le	calcul	de	cette	somme	et	renvoie	sa	valeur	:

import	numpy	as	np
import	math
import	matplotlib.pyplot	as	plt

def	signal(t,f,A,phi):
				'''
								Paramètres	:
												t	:	temps
												f	:	fréquence
												A	:	liste	des	amplitudes	des	harmoniques
												phi	:	liste	des	phases	à	l'origine	des	harmoniques
								Objets	renvoyés	:
												y	:	somme	des	harmoniques
				'''
				y	=	0.0
				for	k	in	range(len(A)):
								y	+=	A[k]*np.cos(2*np.pi*k*f*t+phi[k])
				return	y

On	prendra	pour	simplifier	la	fréquence	du	fondamental	f = 1	;	cela	revient	à	tracer	en	fonction	d'une	fréquence	réduite
f/f0.

Tracé	d'un	signal
Voici	un	exemple	de	signal,	comportant	5	harmoniques	:

A	=	[0,1,0.0,0.4,0.0,0.1]	#liste	des	amplitudes	des	harmoniques
phi	=	[0,0,0,-0.7,0,0.4]	#	liste	des	phases	à	l'origine	des	harmoniques
P	=	len(A)+1	#	nombre	d'harmoniques
f	=	1.0	#	fréquence	réduite
(a,b)=(0,2/f)	#	intervalle	du	tracé	(2	périodes)
N	=	30*P	#		(tracé	précis,	plus	de	points	si	plus	d'harmoniques)
t	=	np.linspace(a,b,N)
plt.figure()	#	ouverture	d'une	nouvelle	figure
plt.plot(t,signal(t,f,A,phi),'b',label='e(t)')	#ajout	d'une	courbe	(en	bleu:'b')	sur	la	figure
plt.grid()
plt.xlabel('t',fontsize=16)
plt.ylabel('u',fontsize=16)
plt.legend(loc='upper	right')
plt.show()

Tracé	d'un	spectre	en	amplitude
Pour	cela,	on	utilise	la	fonction	vlines()	de	matplotlib.pyplot	qui	permet	de	tracer	des	lignes	verticales	à	travers	les	axes.
Sa	synthaxe	est	:	vlines(x,	ymin,	ymax,	‘colors’,	‘linestyles’).	Exemple	à	deux	composantes	spectrales	:

plt.figure(2)	
plt.vlines(0,0,4,'b',label='e(t)')#	Tracé	de	la	composante	continue
plt.vlines(100,0,2,'b')	#	Tracé	de	la	composante	fondamentale



plt.xlabel('f(Hz)')
plt.title	('spectres')
plt.ylabel('amplitude(V)')
plt.show()

Définition	d'un	filtre
L’action	du	filtre	sur	un	signal	périodique	est	déterminée	par	la	fonction	de	transfert	harmonique.	Par	exemple,	pour	un
filtre	passe-bas	du	premier	ordre,	on	définit	la	fonction	suivante	:

def	H(f):
				fc=1	#	fréquence	de	coupure	réduite
				return	1/(1+1j*(f/fc))

Opération	de	filtrage
La	fonction	suivante	applique	une	fonction	de	transfert	à	un	signal	défini	par	la	liste	des	amplitudes	et	des	phases	de	ses
harmoniques	:

def	filtrage(H,A,phi):
				'''
								Paramètres	:
												H	:	fonction	de	transfert	(premier	paramètre	=	fréquence)
												A	:	liste	des	amplitudes	des	harmoniques
												phi	:	liste	des	phases	à	l'origine	des	harmoniques
												
								Objets	renvoyés	:
												A_f	:	liste	des	amplitudes	du	signal	filtré
												phi_f	:	liste	des	phases	à	l'origine	du	signal	filtré
				'''
				A_f	=	A.copy()	#	on	doit	faire	une	copie	des	listes	pour	ne	pas	les	modifier
				phi_f	=	phi.copy()
				for	k	in	range(len(A)):
								h	=	H(k*f)	#	harmonique	de	fréquence	k*f
								A_f[k]	*=	np.absolute(h)	#	calcul	du	module
								phi_f[k]	+=	np.angle(h)	#calcul	de	la	phase
				return	(A_f,phi_f)

Voici	par	exemple	le	filtrage	passe-bas	du	signal	défini	plus	haut,	avec	une	fréquence	de	coupure	égale	à	sa	fréquence.	La
courbe	du	signal	filtré	est	tracée	sur	la	même	figure	que	la	courbe	du	signal	d’entrée.

(A_f,phi_f)	=	filtrage(H,A,phi)
plt.figure(1)	
t	=	np.linspace(a,b,N)
plt.plot(t,signal(t,f,A_f,phi),'r',label='s(t)')
plt.legend(loc='upper	right')
plt.show()

Travail	à	faire
En	s'inspirant	de	ce	qui	est	au	dessus,dans	plusieurs	cellules	de	code	(menu	Cellule,	insérer)	:

1.	 Ecrire	une	fonction	coeffs(n)	renvoyant	les	deux	tableaux	des	n	premières	amplitudes	et	phases	de	la	décomposition
d'un	signal	carré	symétrique	d'amplitude	A=1,	qui	s'écrit

e(t) = 4Aπ(sin(ωt) + 13sin(3ωt) + 15sin(5ωt) + 17sin(7ωt)…)
instruction	éventuellement	utile	:	np.zeros(n)	créee	un	tableau	vide	de	n	éléments	;

2.	 Créér	deux	couples	de	tableaux	A_10,phi_10	et	A_20,phi_2	contenant	les	listes	des	coefficients	des	harmoniques	n=10
ou	20.	Superposer	les	deux	courbes	correspondantes,	comparer	leurs	allures.	On	prendra	n=20	pour	la	suite	du	TP.

3.	 Superposer	les	tracés	des	spectres	en	amplitude	en	entrée	et	en	sortie	du	filtre	passe	bas	;

4.	 Superposer	les	tracés	des	courbes	en	entrée	et	en	sortie	du	filtre	passe	bas	;

5.	 Adapter	le	programme	de	façon	à	vérifier	ce	qui	est	avancé	dans	l'exercice	5	de	la	feuille	ALI	:	appliquer	un	filtre
passe	bande	de	facteur	de	qualité	20	à	un	signal	créneau	de	manière	à	restituer	uniquement	l'harmonique	3	:



comparer	les	spectres	et	signaux	en	entrée	et	en	sortie.

def	coeffs	(n):
				tab_A	=	np.zeros(n)
				tab_Phi	=	np.zeros(n)
				for	i	in	range(n):
								if	(i+1)%2==0:
												tab_A[i]=4/(np.pi*i)
												tab_Phi[i]=np.pi/2
				
				return	tab_A,tab_Phi				

A_10,phi_10=coeffs(10)
A_20,phi_20=coeffs(20)

P	=	len(A_20)+1
f=1.0	#	fréquence
(a,b)=(0,2/f)	#	intervalle	du	tracé	(4	périodes)
N	=	30*P	#		(tracé	précis,	plus	de	points	si	plus	d'harmoniques)
t	=	np.linspace(a,b,N)
plt.figure()
plt.plot(t,signal(t,f,A_10,phi_10),'b',label='10	harmoniques')
plt.plot(t,signal(t,f,A_20,phi_20),'r',label='20	harmoniques')
plt.grid()
plt.xlabel('t',fontsize=16)
plt.ylabel('u',fontsize=16)
plt.legend(loc='upper	right')
plt.show()

def	filtrage(H,A,phi):
				'''
								Paramètres	:
												H	:	fonction	de	transfert	(premier	paramètre	=	fréquence)
												A	:	liste	des	amplitudes	des	harmoniques
												phi	:	liste	des	phases	à	l'origine	des	harmoniques
												
								Objets	renvoyés	:
												A_f	:	liste	des	amplitudes	du	signal	filtré
												phi_f	:	liste	des	phases	à	l'origine	du	signal	filtré
				'''
				A_f	=	A.copy()	#	on	doit	faire	une	copie	des	listes	pour	ne	pas	les	modifier
				phi_f	=	phi.copy()
				for	k	in	range(len(A)):
								h	=	H(k*f)	#	harmonique	de	fréquence	k*f
								A_f[k]	*=	np.absolute(h)
								phi_f[k]	+=	np.angle(h)
				return	(A_f,phi_f)

def	H(f):
				fc=3
				if	f==0:	
								return	0	
				return	1/(1+1j*20.0*(f/fc-fc/f))

(A_s,phi_s)	=	filtrage(H,A_20,phi_20)

plt.figure()	
for	i	in	range(20):
				plt.vlines(i,0,A_20[i],'b',label='e(t)')
				plt.vlines(i+0.1,0,A_s[i],'r',label='s(t)')
plt.xlabel('f')
plt.title	('spectres')
plt.ylabel('amplitude(V)')
plt.show()

plt.figure()	
t	=	np.linspace(a,b,N)
plt.plot(t,signal(t,f,A_20,phi_20),'b',label='e(t)')
plt.plot(t,signal(t,f,A_s,phi_s),'r',label='s(t)')
plt.legend(loc='upper	right')
plt.show()

	



	

	


