Filtrage numérique

Capacité numérique : simuler I'action d’un filtre sur un signal périodique dont le spectre est fourni. Mettre en évidence
I'influence des caractéristiques du filtre sur I'opération de filtrage.

1) Outils, exemples

Calcul d'un signal a partir de ses harmoniques

Le signal périodique, de fréquence fondamentale f, est défini par les amplitudes de ses harmoniques (A pour

k=0,1,...P) et par leur phase a I'origine (@) :
e(t) = Py k=0A cos(2mkft + @)

ou P est le rang de I'harmonique de plus haute fréquence, s’il existe, ou bien le rang auquel on décide de stopper la
somme pour en donner une approximation.

La fonction signal définie ci-dessous effectue le calcul de cette somme et renvoie sa valeur :

import numpy as np
import math
import matplotlib.pyplot as plt

def signal(t,f,A,phi):
Paramétres :
t : temps
f : fréquence
A : liste des amplitudes des harmoniques
phi : liste des phases a l'origine des harmoniques
Objets renvoyés :
y : somme des harmoniques
y = 0.0
for k in range(len(A)):
y += A[k]*np.cos(2*np.pi*k*f*t+phi[k])
return y

On prendra pour simplifier la fréquence du fondamental f = 1 ; cela revient a tracer en fonction d'une fréquence réduite
f/fo-
Tracé d'un signal

Voici un exemple de signal, comportant 5 harmoniques :

A=1[0,1,0.0,0.4,0.0,0.1] #liste des amplitudes des harmoniques

phi = [0,0,0,-0.7,0,0.4] # liste des phases a l'origine des harmoniques
P = len(A)+1 # nombre d'harmoniques

f = 1.0 # fréquence réduite

(a,b)=(0,2/f) # intervalle du tracé (2 périodes)

N = 30*P # (tracé précis, plus de points si plus d'harmoniques)

t = np.linspace(a,b,N)

plt.figure() # ouverture d'une nouvelle figure

plt.plot(t,signal(t,f,A,phi),'b',label="'e(t)"') #ajout d'une courbe (en bleu:'b') sur la figure
plt.grid()

plt.xlabel('t', fontsize=16)

plt.ylabel('u', fontsize=16)

plt.legend(loc="upper right')

plt.show()

Tracé d'un spectre en amplitude
Pour cela, on utilise la fonction vlines() de matplotlib.pyplot qui permet de tracer des lignes verticales a travers les axes.

Sa synthaxe est : vlines(x, ymin, ymax, ‘colors’, ‘linestyles’). Exemple a deux composantes spectrales :

plt.figure(2)
plt.vlines(0,0,4,'b',label="e(t)"')# Tracé de la composante continue
plt.vlines(100,0,2,'b') # Tracé de la composante fondamentale

plt.xlabel('f(Hz)")
plt.title ('spectres')
plt.ylabel('amplitude(V)")
plt.show()

Définition d'un filtre

L'action du filtre sur un signal périodique est déterminée par la fonction de transfert harmonique. Par exemple, pour un
filtre passe-bas du premier ordre, on définit la fonction suivante :

def H(f):
fc=1 # fréquence de coupure réduite
return 1/(1+1j*(f/fc))

Opération de filtrage

La fonction suivante applique une fonction de transfert a un signal défini par la liste des amplitudes et des phases de ses
harmoniques :

def filtrage(H,A,phi):

Paramétres :
H : fonction de transfert (premier paramétre = fréquence)
A : liste des amplitudes des harmoniques
phi : liste des phases a l'origine des harmoniques

Objets renvoyés :
A f : liste des amplitudes du signal filtré
phi f : liste des phases a l'origine du signal filtré

A f = A.copy() # on doit faire une copie des listes pour ne pas les modifier
phi f = phi.copy()
for k in range(len(A)):
h = H(k*f) # harmonique de fréquence k*f
A f[k] *= np.absolute(h) # calcul du module
phi f[k] += np.angle(h) #calcul de la phase
return (A f,phi f)

Voici par exemple le filtrage passe-bas du signal défini plus haut, avec une fréquence de coupure égale a sa fréquence. La
courbe du signal filtré est tracée sur la méme figure que la courbe du signal d’entrée.

(A f,phi f) = filtrage(H,A,phi)

plt.figure(l)

t = np.linspace(a,b,N)

plt.plot(t,signal(t,f,A f,phi),'r',label="s(t)")
plt.legend(loc="upper right')

plt.show()

Travail a faire

En s'inspirant de ce qui est au dessus,dans plusieurs cellules de code (menu Cellule, insérer) :

1. Ecrire une fonction coeffs(n) renvoyant les deux tableaux des n premieres amplitudes et phases de la décomposition
d'un signal carré symétrique d'amplitude A=1, qui s'écrit

e(t) = 4Ar(sin(wt) + 13sin(3wt) + 15sin(5wt) + 17sin(7wt)...)

instruction éventuellement utile : np.zeros(n) créee un tableau vide de n éléments ;

2. Créér deux couples de tableaux A_10,phi_10 et A 20,phi_2 contenant les listes des coefficients des harmoniques n=10
ou 20. Superposer les deux courbes correspondantes, comparer leurs allures. On prendra n=20 pour la suite du TP.

3. Superposer les tracés des spectres en amplitude en entrée et en sortie du filtre passe bas ;
4. Superposer les tracés des courbes en entrée et en sortie du filtre passe bas ;

5. Adapter le programme de facon a vérifier ce qui est avancé dans |'exercice 5 de la feuille ALl : appliquer un filtre
passe bande de facteur de qualité 20 a un signal créneau de maniére a restituer uniquement I'harmonique 3 :

comparer les spectres et signaux en entrée et en sortie.

def coeffs (n):
tab A = np.zeros(n)
tab Phi = np.zeros(n)
for i in range(n):
if (i+1)%2==0:
tab A[i]=4/(np.pi*i)
tab Phi[i]=np.pi/2

return tab A,tab Phi

A 10,phi 10=coeffs(10)
A 20,phi_20=coeffs(20)

P = len(A 20)+1

f=1.0 # fréquence

(a,b)=(0,2/f) # intervalle du tracé (4 périodes)

N = 30*%P # (tracé précis, plus de points si plus d'harmoniques)
t = np.linspace(a,b,N)

plt.figure()

plt.plot(t,signal(t,f,A 10,phi 10),'b',label="'10 harmoniques")
plt.plot(t,signal(t,f,A 20,phi 20),'r',label='20 harmoniques')
plt.grid()

plt.xlabel('t',6 fontsize=16)

plt.ylabel('u',fontsize=16)

plt.legend(loc="'upper right')

plt.show()

def filtrage(H,A,phi):
Paramétres :
H : fonction de transfert (premier parameétre = fréquence)
A : liste des amplitudes des harmoniques
phi : liste des phases a l'origine des harmoniques

Objets renvoyés :
A f : liste des amplitudes du signal filtré
phi f : liste des phases a l'origine du signal filtré
A f = A.copy() # on doit faire une copie des listes pour ne pas les modifier
phi f = phi.copy()
for k in range(len(A)):
h = H(k*f) # harmonique de fréquence k*f
A f[k] *= np.absolute(h)
phi f[k] += np.angle(h)
return (A_f,phi_f)

def H(f):
fc=3
if f==0:
return 0
return 1/(1+1j*20.0*(f/fc-fc/f))

(A s,phi s) = filtrage(H,A 20,phi 20)

plt.figure()

for i in range(20):
plt.vlines(i,0,A 20[i], 'b',label="e(t)")
plt.vlines(i+0.1,0,A s[i],'r',label="s(t)")

plt.xlabel('f")

plt.title ('spectres')

plt.ylabel('amplitude(V)")

plt.show()

plt.figure()

t = np.linspace(a,b,N)
plt.plot(t,signal(t,f,A 20,phi 20),'b"',label="e(t)")
plt.plot(t,signal(t,f,A s,phi s),'r',label="s(t)")
plt.legend(loc="upper right')

plt.show()

