Odeint et le pendule simple

Le pendule simple a pour équation (voir TD de dynamique) y”
On ne sait pas résoudre cette équation différentielle non linéaire, python va le faire pour nous.
Dans tout le TP, on lachera le pendule a vitesse nulle : a t=0, y=0

1. Dans quelle approximation peut on se placer pour résoudre une équation approchée ? Le faire, calculer a la main la
période de la solution.

2. On veut étudier la différence entre les solutions de I'équation linéarisée et celles de I'équation initiale. Nous nous
interesserons a la période des oscillations (notée ici Pe, pour ne pas confondre avec le tableau temporel T). Pour
mettre facilement en évidence une différence, comment choisir \omega pour avoir une période linéarisée de 1
seconde ? On gardera cette valeur de \omega pendant toute I'activité.

De méme, dans toute I'activité, on lachera le pendule a vitesse nulle : a t=0, y=0

3. Compléter le script suivant avec odeint pour calculer et tracer la solution de I'équation non linéarisée, avec la
condition initiale en angle suivante : y(0)=10° (a convertir en radians !)

On superposera sur le graphe la solution de I'équation linéarisée pour faire apparaitre une éventuelle différence

from scipy.integrate import odeint
import matplotlib.pyplot as plt

import numpy as np

plt.clf() #efface la figure précédente

fonction de 1'equation differentielle

def F(Y,t):
y = Y[0]
yp = Y[1]

fabrication de la sortie : y' est déja la, c'est yp !!!

ne reste qu'a exprimer y'' avec l'equation differentielle
ypp=-np.sin(y)*4*3.1415927**2
return (yp,ypp)

intervalle de resolution, on prend 1000 valeurs de t entre 0 et 1.1 s
T = np.linspace (0 ,1.1 ,10000)

Conditions initiales
CI_y=60%*3.14159/180 # CI sur y
CI yp=0 # ci SUR y'

CI=(CI y,CI yp)

Sol = odeint (F,CI,T)

Y sol=Sol[:,0]

plt.plot(T,Y sol)

Y ref=CI y*np.cos(2*3.14159*T)
plt.plot(T,Y ref)

plt.show()

3. Refaire la méme chose en modifiant le script ci-dessus, pour des angles initiaux de 30 et 60° (pendule toujours laché
sans vitesse initiale). Que constate-t-on ?

La période est donc fonction de I'angle initial T=f(y_0). Nous allons tracer cette courbe.

4. Compléter la fonction \pyth|Periode(Y,t)| qui prend comme argument un tableau \pyth|Y| (a une dimension) et le
tableau \pyth|t | des temps associées, et retourne la période de Y. On peut remarquer que T/4 est le temps que met y
a passer la premiere fois par zero.

def Periode(Y,t):

N = len(Y)
for i in range(N):
if Y[i]<0:

return t[i]*4
print ('pas de période trouvée')
return 0

5. Compléter le script suivant, de maniere a tracer T=f(y_0) pour les angles initiaux répartis tous les 5° entre 0 et 90°.

angles degres = np.linspace (1,150,20)
print (angles degres)
angles radians = angles degres*np.pi/180

Periodes=[]

for angle in angles radians:
CI = (angle,0)
Sol = odeint (F,CI,T)
Y sol=Sol[:,0]
per = Periode(Y sol,T)
print (per)
Periodes.append(per)

plt.clf()

plt.scatter(angles degres,Periodes)

plt.show()

[1 8.84210526 16.68421053 24.52631579 32.36842105

40.21052632 48.05263158 55.89473684 63.73684211 71.57894737
79.42105263 87.26315789 95.10526316 102.94736842 110.78947368
118.63157895 126.47368421 134.31578947 142.15789474 150.]
.0002200220022004

.0015401540154016

.0055005500550056

.0116611661166117

.0204620462046206

.031903190319032

.0459845984598461

.0631463146314633

.0833883388338834

.1075907590759078

.1353135313531355

.167876787678768

.2057205720572057

.24972497249725

.3012101210121014

.3614961496149616

.4332233223322333

.5199119911991201

.6264026402640266

.7623762376237626

F R R ERERRERRERRERRRRRREBRRRR B2

