
Odeint	et	le	pendule	simple
Le	pendule	simple	a	pour	équation	(voir	TD	de	dynamique)	y ″

On	ne	sait	pas	résoudre	cette	équation	différentielle	non	linéaire,	python	va	le	faire	pour	nous.

Dans	tout	le	TP,	on	lâchera	le	pendule	à	vitesse	nulle	:	à	t=0,	y=0

1.	 Dans	quelle	approximation	peut	on	se	placer	pour	résoudre	une	équation	approchée	?	Le	faire,	calculer	à	la	main	la
période	de	la	solution.

2.	 On	veut	étudier	la	différence	entre	les	solutions	de	l'équation	linéarisée	et	celles	de	l'équation	initiale.	Nous	nous
interesserons	à	la	période	des	oscillations	(notée	ici	Pe,	pour	ne	pas	confondre	avec	le	tableau	temporel	T).	Pour
mettre	facilement	en	évidence	une	différence,	comment	choisir	\omega	pour	avoir	une	période	linéarisée	de	1
seconde	?	On	gardera	cette	valeur	de	\omega	pendant	toute	l'activité.

De	même,	dans	toute	l'activité,	on	lâchera	le	pendule	à	vitesse	nulle	:	à	t=0,	y=0

3.	 Compléter	le	script	suivant	avec	odeint	pour	calculer	et	tracer	la	solution	de	l'équation	non	linéarisée,	avec	la
condition	initiale	en	angle	suivante	:	y(0)=10°	(à	convertir	en	radians	!)

On	superposera	sur	le	graphe	la	solution	de	l'équation	linéarisée	pour	faire	apparaitre	une	éventuelle	différence

from	scipy.integrate	import	odeint
import	matplotlib.pyplot	as	plt
import	numpy	as	np	
plt.clf()	#efface	la	figure	précédente

#	fonction	de	l'equation	differentielle	
def	F(Y,t):
				y	=	Y[0]
				yp	=	Y[1]

#	fabrication	de	la	sortie	:	y'	est	déja	là,	c'est	yp	!!!
#	ne	reste	qu'a	exprimer	y''	avec	l'equation	differentielle
				ypp=-np.sin(y)*4*3.1415927**2
				return	(yp,ypp)

#	intervalle	de	resolution,	on	prend	1000	valeurs	de	t	entre	0	et	1.1	s
T	=	np.linspace	(0	,1.1	,10000)

#	Conditions	initiales
CI_y=60*3.14159/180		#	CI	sur	y	
CI_yp=0	#	ci	SUR	y'
CI=(CI_y,CI_yp)

Sol	=	odeint	(F,CI,T)
Y_sol=Sol[:,0]	
plt.plot(T,Y_sol)
Y_ref=CI_y*np.cos(2*3.14159*T)
plt.plot(T,Y_ref)
plt.show()

3.	 Refaire	la	même	chose	en	modifiant	le	script	ci-dessus,	pour	des	angles	initiaux	de	30	et	60°	(pendule	toujours	lâché
sans	vitesse	initiale).	Que	constate-t-on	?

La	période	est	donc	fonction	de	l'angle	initial	T=f(y_0).	Nous	allons	tracer	cette	courbe.

4.	 Compléter	la	fonction	\pyth|Periode(Y,t)|	qui	prend	comme	argument	un	tableau	\pyth|Y|	(à	une	dimension)	et	le
tableau	\pyth|t	|	des	temps	associées,	et	retourne	la	période	de	Y.	On	peut	remarquer	que	T/4	est	le	temps	que	met	y
à	passer	la	première	fois	par	zero.

def	Periode(Y,t):
				N	=	len(Y)	
				for	i	in	range(N):
								if	Y[i]<0:
												return	t[i]*4
				print	('pas	de	période	trouvée')
				return	0

5.	 Compléter	le	script	suivant,	de	manière	à	tracer	T=f(y_0)	pour	les	angles	initiaux	répartis	tous	les	5°	entre	0	et	90°.

angles_degres	=	np.linspace	(1,150,20)
print	(angles_degres)
angles_radians	=	angles_degres*np.pi/180

Periodes=[]
for	angle	in	angles_radians:
					CI	=	(angle,0)
					Sol	=	odeint	(F,CI,T)
					Y_sol=Sol[:,0]	
					per	=	Periode(Y_sol,T)
					print	(per)
					Periodes.append(per)

plt.clf()	
plt.scatter(angles_degres,Periodes)
plt.show()

[1.											8.84210526		16.68421053		24.52631579		32.36842105
		40.21052632		48.05263158		55.89473684		63.73684211		71.57894737
		79.42105263		87.26315789		95.10526316	102.94736842	110.78947368
	118.63157895	126.47368421	134.31578947	142.15789474	150.]
1.0002200220022004
1.0015401540154016
1.0055005500550056
1.0116611661166117
1.0204620462046206
1.031903190319032
1.0459845984598461
1.0631463146314633
1.0833883388338834
1.1075907590759078
1.1353135313531355
1.167876787678768
1.2057205720572057
1.24972497249725
1.3012101210121014
1.3614961496149616
1.4332233223322333
1.5199119911991201
1.6264026402640266
1.7623762376237626

	

