{ DS Physique 3h - calculatrice interdite ]

On se contentera, pour les applications numériques, d’un seul chiffre significatif.

Roller coaster

Dans un manege, un train est accéléré pendant t, = 2,5 s sous I'accélération constante
a = 1,15 g. Une fois accéléré, il aborde le «fer a cheval », photographié ci-contre, de
hauteur maximale par rapport a la zone de lancement h = 37 m, puis un looping
circulaire de rayon R = 15 m qu’il aborde & la vitesse vy = 27 m - s~! (voir figure)

1) Justifier que le train peut franchir le fer a cheval. On explicitera les hypotheses
adoptées et les lois utilisées.

2) On prendra 6(¢t = 0) = 0. Reproduire le looping sur votre copie, et y représenter en M la base polaire (e_r)7 e_g). Etablir Iexpression

du vecteur accélération de M dans la base polaire ( e;, e ). On I'exprimera en fonction de v = ||7]|, © et R.

3) Sur le schéma de la question précédente, représenter qualitativement le vecteur accélération de M pour § = 5, 0 = et 6 = 37”

On justifiera la construction.

4) Etablir I'équation différentielle liant 6 & g, R et 6 au cours du looping. Peut-on déterminer 0(t) de maniere analytique (c’est-a-dire
«& la main ») facilement & partir de cette équation ? Pourquoi ?

Pour estimer le temps nécessaire a la réalisation compléte du looping, on propose de résoudre cette équation différentielle par un
programme python utilisant la fonction odeint de la bibliothéque scipy.integrate dont la spécification simplifiée est fournie a la fin
du sujet.

5) Recopier en les complétant sur votre copie les lignes a partir de la ligne 9 pour que le programme calcule et affecte & res la
solution de I’équation différentielle déterminée a la question précédente.

import numpy as np os
from scipy.integrate import odeint 80

w

R=15 65
5 g=9.81 ‘o
¢ v0=27 o
7 tabt=np.linspace (0,8,1000)

IS

0(t)(rad)

o def derivee(X,t):
11 return ... 20
13 theta0=0

14 dthetaO=. .. 00
15 res=odeint (...) i(s)

6) En exécutant ce programme, on obtient le graphe ci-dessus pour 6(t). En déduire la valeur numérique du temps nécessaire pour
effectuer le looping.

e Utilisation de la fonction odeint pour résoudre une équation différentielle d’ordre 2 d’une fonction inconnue
x(t) :

odeint (func,X0,t)

Parametres d’entrée :

func : fonction de X et du temps ¢ qui renvoie la dérivée X=[4, ] du vecteur d’état X =[xz, i] & l'instant ¢ sous
forme d’'une liste & 2 éléments.

X0 : vecteur condition initiale X (t = 0)=[z(¢ = 0), @(t = 0)]

t : tableau des temps pour lesquels la fonction doit calculer les valeurs de X (t).

Valeur de retour :
Renvoie un tableau contenant les valeurs de X (¢)

Traineau sur la glace

Un traineau & chiens est un dispositif de masse totale M (le pilote, ou musher, est compris dans cette masse) qui peut glisser sur
la surface de la glace avec des coefficients de glissement statique (avant le démarrage) us et dynamique (en mouvement) pig.

1. Les chiens sont reliés au traineau par des éléments de corde tendus, de masse négligeable et inextensibles. Montrer, en s’appuyant
sur un dessin, qu'un tel élément de corde transmet les tensions.



2. Rappeler les lois de Coulomb du frottement solide.

3. Le trajet se fait rectilignement, soit a I’horizontale, soit sur une faible pente ascendante caractérisée par I’angle a avec 'horizontale.
Ecrire dans ces deux cas I’équation du mouvement en fonction notamment de 7', tension de la corde, pug et o

Montrer que, dans le cas de la faible pente, tout se passe comme dans un mouvement horizontal sous réserve de remplacer pg par
1, que 'on exprimera.

Dans toute la suite du probléme, on suppose que le trajet se fait a 'horizontale.

L’intensité de la force de traction totale F' exercée par ’ensemble des chiens dépend de leur vitesse v et on adoptera le modele
F = Fy — Bv out Fy et 3 sont des constantes positives. On prendra les valeurs M = 5,0 - 10® kg, = 0, g = 5,0 - 1072 et
ps = 8,0-1072.

4. Déterminer la valeur minimale de Fj permettant le démarrage du traineau.

5. Montrer que I’équation du mouvement peut s’écrire

ou v désigne la vitesse du traineau et 7 et v,, des constantes dont on précisera I’expression.

6. La vitesse du traineau en régime stationnaire est vo = 3,0 m - s~ !, atteinte & 5% prés au bout d’un temps t; = 5,0 s. Exprimer
d’une part § en fonction de M et t; et d’autre part Fy en fonction de 3, vq, g, M et g. Calculer leurs valeurs respectives.

Toujours a vitesse constante v, le traineau aborde une courbe a plat qu’on assimilera ! 0
& un cercle de centre O et de rayon R (figure ci-contre). Les chiens (modélisés ici en
un seul point C' ) doivent donc tirer vers Uintérieur du cercle.

7. Déterminer en fonction des données la tension T de la corde et I’angle 6 entre la
force de traction et la traineau trajectoire.

Trajectoire d’un volant de badminton

Le badminton est un sport dans lequel les joueurs frappent un projectile, appelé volant, a I’aide d’une raquette. Le but de ce
probléme est de proposer une modélisation simplifiée de la trajectoire du volant sous leffet conjugué de la pesanteur et de la
résistance de l'air, et de confronter le modeéle aux résultats d’une expérience. On négligera la poussée d’Archimede dans tout le
probléme. On néglige dans un premier temps la force de freinage exercée par l’air. On assimile le volant & un point matériel M(m).

1. On lance depuis le sol le volant de masse m avec une vitesse initiale Uy, dans une direction faisant un angle 6, avec le plan du
sol, supposé horizontal. Quelle est la nature de la trajectoire ? Dessiner son allure. Déterminer la portée Ly (distance horizontale
a laquelle le volant retombe sur le sol) en fonction de Uy, de 6, et de Paccélération de la pesanteur g. On rappelle la formule
sin(2z) = 2sinz cosx

2. Validez dimensionnellement ’expression de Ly obtenue et vérifiez-la sur des cas limites simples que vous choisirez.
3. La vitesse initiale étant fixée, quel angle 6y permet d’envoyer le volant le plus loin possible 7

On tient maintenant compte du freinage de I'air, modélisé en assimilant le volant & une sphére solide en mouvement dans un fluide
newtonien. On écrit la force de freinage sous la forme F' = f%pSC’zU U, ou U est la vitesse du volant et U sa norme, p la masse
volumique de l'air, S la surface de référence du volant, et C,, le coefficient de trainée.

4. Déterminer la dimension de C.

5. Ecrire I'équation vectorielle du mouvement du volant. Montrer qu’elle admet une solution particuliére, correspondant a un
mouvement rectiligne uniforme dont on exprimera la vitesse, notée Uy, en fonction des parametres du probleme.

6. Réécrire ’équation du mouvement en faisant notamment apparaitre le rapport UL
o

7. A quelle condition sur U peut-on négliger la pesanteur 7 On suppose dans toute la suite du probleme que cette condition est
initialement vérifiée. Dans ce cas, quelle est la nature de la trajectoire ? Montrer que U satisfait 1’équation

au

— = —kU?

dt
Préciser 'expression de la constante k et intégrer cette équation pour obtenir U en fonction du temps. On pourra pocéder par
séparation des variables.



8. En utilisant cette expression, déterminer et calculer le temps ;2 pour lequel la vitesse est ¢gale a la moitié¢ de la vitesse initiale.

Repérer le point correspondant sur la chronophotographie de la figure 1 . Vérifier, par une mesure que ’on expliquera, que la vitesse
en ce point est bien approximativement la moitié de la vitesse initiale.

9. Toujours dans le cadre de Papproximation de la question 7, déterminer I'expression donnant la distance horizontale x(t) parcourue
au temps ¢.

10. Obtenir z en fonction de U.

11. On suppose que 'approximation de la question 7 cesse d’étre valable lorsque la composante verticale de la force de freinage est
égale au poids. Quelle est I'expression de U a cet instant 7 En déduire la distance horizontale parcourue L.

On modélise la trajectoire du volant en distinguant trois régimes successifs :

(1) le régime que l'on vient d’étudier, durant lequel I’accélération de la pesanteur est négligeable ;
(2) un régime intermédiaire ;

(3) un régime limite durant lequel l'accélération du volant est négligeable.
12. Localiser sur la chronophotographie le régime limite ainsi défini, en justifiant précisément votre réponse.

13. Une approximation de la trajectoire consiste a oublier la partie correspondant au régime intermédiaire. Dessiner la trajectoire
obtenue dans cette approximation.

14. Donner 'expression littérale de la portée du tir dans cette approximation. Comment se compare-t-elle a la portée en I’absence
de freinage, déterminée a la question 17

15. Estimer numériquement la portée du tir. On donne In 8 ~ 2;sin (6y) ~ 0, 8; cos (6y) ~ 0,6. Comparer le résultat avec la valeur
indiquée sur la chronophotographie.

16. Durant le régime intermédiaire, tous les termes de I’équation du mouvement sont du méme ordre de grandeur. En déduire, par

un argument dimensionnel, une expression littérale de 'ordre de grandeur de la distance parcourue lors du régime intermédiaire.
Dans quelle limite 'approximation faite a la question 13 est-elle justifiée 7

17. Comment faudrait-il modifier les parametres de I'expérience pour que la trajectoire corresponde plus précisément a celle obtenue
a la question 137 On discutera suivant la vitesse initiale et la nature du projectile.

18. Donner les expressions littérales des temps de montée et de descente du volant. Estimer, par un argument dimensionnel, I’ordre
de grandeur littéral de la durée du régime intermédiaire. Comparer les durées de ces trois régimes.
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Figure 1: Positions successives d’'un volant de badminton allant de
la gauche vers la droite, enregistrées toutes les 50 ms. Le premier
point, repéré par le chiffre 0, correspond au lancer a t = 0.



