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DS Physique 3h - calculatrice interdite

On se contentera, pour les applications numériques, d’un seul chiffre significatif.

1 Roller coaster
Dans un manège, un train est accéléré pendant ta = 2, 5 s sous l’accélération constante
a = 1, 15 g. Une fois accéléré, il aborde le «fer à cheval », photographié ci-contre, de
hauteur maximale par rapport à la zone de lancement h = 37 m, puis un looping
circulaire de rayon R = 15 m qu’il aborde à la vitesse v0 = 27 m · s−1 (voir figure)

1) Justifier que le train peut franchir le fer à cheval. On explicitera les hypothèses
adoptées et les lois utilisées.

2) On prendra θ(t = 0) = 0. Reproduire le looping sur votre copie, et y représenter en M la base polaire (−→er , −→eθ). Établir l’expression
du vecteur accélération de M dans la base polaire ( −→er , −→eθ ). On l’exprimera en fonction de v = ∥v⃗∥, v̇ et R.

3) Sur le schéma de la question précédente, représenter qualitativement le vecteur accélération de M pour θ = π
2 , θ = π et θ = 3π

2 .
On justifiera la construction.

4) Établir l’équation différentielle liant θ̈ à g, R et θ au cours du looping. Peut-on déterminer θ(t) de manière analytique (c’est-à-dire
«à la main ») facilement à partir de cette équation ? Pourquoi ?
Pour estimer le temps nécessaire à la réalisation complète du looping, on propose de résoudre cette équation différentielle par un
programme python utilisant la fonction odeint de la bibliothèque scipy.integrate dont la spécification simplifiée est fournie à la fin
du sujet.

5) Recopier en les complétant sur votre copie les lignes à partir de la ligne 9 pour que le programme calcule et affecte à res la
solution de l’équation différentielle déterminée à la question précédente.

6) En exécutant ce programme, on obtient le graphe ci-dessus pour θ(t). En déduire la valeur numérique du temps nécessaire pour
effectuer le looping.

2 Traîneau sur la glace
Un traîneau à chiens est un dispositif de masse totale M (le pilote, ou musher, est compris dans cette masse) qui peut glisser sur
la surface de la glace avec des coefficients de glissement statique (avant le démarrage) µs et dynamique (en mouvement) µd.

1. Les chiens sont reliés au traîneau par des éléments de corde tendus, de masse négligeable et inextensibles. Montrer, en s’appuyant
sur un dessin, qu’un tel élément de corde transmet les tensions.
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2. Rappeler les lois de Coulomb du frottement solide.

3. Le trajet se fait rectilignement, soit à l’horizontale, soit sur une faible pente ascendante caractérisée par l’angle α avec l’horizontale.
Écrire dans ces deux cas l’équation du mouvement en fonction notamment de T , tension de la corde, µd et α
Montrer que, dans le cas de la faible pente, tout se passe comme dans un mouvement horizontal sous réserve de remplacer µd par
µ′

d, que l’on exprimera.

Dans toute la suite du problème, on suppose que le trajet se fait à l’horizontale.

L’intensité de la force de traction totale F exercée par l’ensemble des chiens dépend de leur vitesse v et on adoptera le modèle
F = F0 − βv où F0 et β sont des constantes positives. On prendra les valeurs M = 5, 0 · 102 kg, α = 0, µd = 5, 0 · 10−2 et
µs = 8, 0 · 10−2.

4. Déterminer la valeur minimale de F0 permettant le démarrage du traîneau.

5. Montrer que l’équation du mouvement peut s’écrire

v̇ + v

τ
= v∞

τ

où v désigne la vitesse du traineau et τ et v∞ des constantes dont on précisera l’expression.

6. La vitesse du traîneau en régime stationnaire est v0 = 3, 0 m · s−1, atteinte à 5% près au bout d’un temps t1 = 5, 0 s. Exprimer
d’une part β en fonction de M et t1 et d’autre part F0 en fonction de β, v0, µd, M et g. Calculer leurs valeurs respectives.

Toujours à vitesse constante ν0, le traîneau aborde une courbe à plat qu’on assimilera
à un cercle de centre O et de rayon R (figure ci-contre). Les chiens (modélisés ici en
un seul point C ) doivent donc tirer vers l’intérieur du cercle.

7. Déterminer en fonction des données la tension T⃗ de la corde et l’angle θ entre la
force de traction et la traîneau trajectoire.

3 Trajectoire d’un volant de badminton
Le badminton est un sport dans lequel les joueurs frappent un projectile, appelé volant, à l’aide d’une raquette. Le but de ce
problème est de proposer une modélisation simplifiée de la trajectoire du volant sous l’effet conjugué de la pesanteur et de la
résistance de l’air, et de confronter le modèle aux résultats d’une expérience. On négligera la poussée d’Archimède dans tout le
problème. On néglige dans un premier temps la force de freinage exercée par l’air. On assimile le volant à un point matériel M(m).

1. On lance depuis le sol le volant de masse m avec une vitesse initiale U0, dans une direction faisant un angle θ0 avec le plan du
sol, supposé horizontal. Quelle est la nature de la trajectoire ? Dessiner son allure. Déterminer la portée L0 (distance horizontale
à laquelle le volant retombe sur le sol) en fonction de U0, de θ0, et de l’accélération de la pesanteur g. On rappelle la formule
sin(2x) = 2 sin x cos x

2. Validez dimensionnellement l’expression de L0 obtenue et vérifiez-la sur des cas limites simples que vous choisirez.

3. La vitesse initiale étant fixée, quel angle θ0 permet d’envoyer le volant le plus loin possible ?

On tient maintenant compte du freinage de l’air, modélisé en assimilant le volant à une sphère solide en mouvement dans un fluide
newtonien. On écrit la force de freinage sous la forme F⃗ = − 1

2 ρSCxUU⃗ , où U⃗ est la vitesse du volant et U sa norme, ρ la masse
volumique de l’air, S la surface de référence du volant, et Cx le coefficient de traînée.

4. Déterminer la dimension de Cx.

5. Écrire l’équation vectorielle du mouvement du volant. Montrer qu’elle admet une solution particulière, correspondant à un
mouvement rectiligne uniforme dont on exprimera la vitesse, notée U∞, en fonction des paramètres du problème.

6. Réécrire l’équation du mouvement en faisant notamment apparaître le rapport U⃗
U∞

7. A quelle condition sur U peut-on négliger la pesanteur ? On suppose dans toute la suite du problème que cette condition est
initialement vérifiée. Dans ce cas, quelle est la nature de la trajectoire ? Montrer que U satisfait l’équation

dU

dt
= −kU2

Préciser l’expression de la constante k et intégrer cette équation pour obtenir U en fonction du temps. On pourra pocéder par
séparation des variables.
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8. En utilisant cette expression, déterminer et calculer le temps t1/2 pour lequel la vitesse est égale à la moitié de la vitesse initiale.
Repérer le point correspondant sur la chronophotographie de la figure 1 . Vérifier, par une mesure que l’on expliquera, que la vitesse
en ce point est bien approximativement la moitié de la vitesse initiale.

9. Toujours dans le cadre de l’approximation de la question 7, déterminer l’expression donnant la distance horizontale x(t) parcourue
au temps t.

10. Obtenir x en fonction de U .

11. On suppose que l’approximation de la question 7 cesse d’être valable lorsque la composante verticale de la force de freinage est
égale au poids. Quelle est l’expression de U à cet instant ? En déduire la distance horizontale parcourue L.

On modélise la trajectoire du volant en distinguant trois régimes successifs :
(1) le régime que l’on vient d’étudier, durant lequel l’accélération de la pesanteur est négligeable ;
(2) un régime intermédiaire ;
(3) un régime limite durant lequel l’accélération du volant est négligeable.

12. Localiser sur la chronophotographie le régime limite ainsi défini, en justifiant précisément votre réponse.

13. Une approximation de la trajectoire consiste à oublier la partie correspondant au régime intermédiaire. Dessiner la trajectoire
obtenue dans cette approximation.

14. Donner l’expression littérale de la portée du tir dans cette approximation. Comment se compare-t-elle à la portée en l’absence
de freinage, déterminée à la question 1 ?

15. Estimer numériquement la portée du tir. On donne ln 8 ≃ 2; sin (θ0) ≃ 0, 8; cos (θ0) ≃ 0, 6. Comparer le résultat avec la valeur
indiquée sur la chronophotographie.

16. Durant le régime intermédiaire, tous les termes de l’équation du mouvement sont du même ordre de grandeur. En déduire, par
un argument dimensionnel, une expression littérale de l’ordre de grandeur de la distance parcourue lors du régime intermédiaire.
Dans quelle limite l’approximation faite à la question 13 est-elle justifiée ?

17. Comment faudrait-il modifier les paramètres de l’expérience pour que la trajectoire corresponde plus précisément à celle obtenue
à la question 13 ? On discutera suivant la vitesse initiale et la nature du projectile.

18. Donner les expressions littérales des temps de montée et de descente du volant. Estimer, par un argument dimensionnel, l’ordre
de grandeur littéral de la durée du régime intermédiaire. Comparer les durées de ces trois régimes.
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