Récapitulatif résolution des équations différentielles d'ordre 2 avec Python

import numpy as np

import matplotlib.pyplot as plt
from scipy.integrate import odeint

def eulerV(f,xo,t):

N=len(t)

h=t[1]-t[0]

x=np.zeros((2,N))

x[:,0]= xo

for 1 in range(N-1):
x[:,i+1]=x[:,i]+h*f(x[:,1i]1,t[i])

return Xx

def fV(X,t):
d1=X[1]
d2=-np.sin(X[0])
return np.array([d1l,d2])
to=0
tf=2*np.pi*2
N=10000
T=np.linspace(to,tf,N+1)
XO0=np.array([np.pi/18,0.1])
sole=eulerV(fV,X0,T)
th=sole[0, : ]*180/np.pi
plt.figure()
plt.plot(T,th)
plt.x1lim(0,12)
plt.ylim(-10,10)
plt.show()

sol=odeint (fV,X0,T)
theta=sol[:,0]*180/np.pi
plt.figure()
plt.plot (T, theta)
plt.x1lim(0,12)
plt.ylim(-10,10)
plt.show()

def euler(f,yo,t):
N=len(t)
y=yo



L=[y]
for 1 in range (N-1):
y=y+f(y, t[i])*(t[i+1]-t[1i])
L.append(y)
return np.array(L)
sole=euler(fV,X0,T)
th=sole[:,0]*180/np.pi

plt.figure()
plt.plot(T,th)
plt.x1lim(0,12)
plt.ylim(-10,10)
plt.show()



