Entrainement 4

Entraînement 1 — Diamètre apparent.

On considère le schéma suivant, montrant l'angle α , appelé diamètre apparent, sous lequel est vu un objet AB depuis un point O.

0000

- Exprimer le diamètre apparent α , en radians, en fonction de OA et AB
- b) Exprimer le diamètre apparent α , en degrés, en fonction de OA et AB

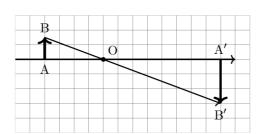
Un observateur situé à la surface de la Terre observe des astres, caractérisés par les données suivantes :

	Soleil	Lune
Diamètre	$1.4 \cdot 10^6 \mathrm{km}$	$3.5 \cdot 10^3 \mathrm{km}$
Distance à la Terre	$150 600 \cdot 10^3 \mathrm{km}$	384 400 km

Pour simplifier les calculs, on pourra utiliser que, quand α est un angle petit et exprimé en radians, on dispose de l'approximation des petits angles : $\alpha \approx \tan(\alpha)$.

- d) Calculer le diamètre apparent du Soleil $\alpha_{\rm S}$ en degrés
- e) Que vérifient les valeurs numériques α_S et α_L ?
- (a) $\alpha_{\rm S} > \alpha_{\rm L}$

(b) $\alpha_{\rm S} \approx \alpha_{\rm L}$

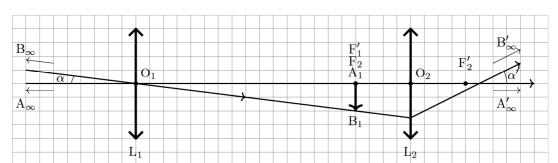

(c) $\alpha_{\rm S} < \alpha_{\rm L}$

- f) Quel phénomène astronomique la comparaison de α_L et α_S permet d'expliquer ?
- (a) Les éclipses
- (b) Les saisons
- (c) Les marées

0000

Entraînement .2 — Configuration de Thalès et grandissement.

On considère la situation représentée sur le schéma ci-dessous.



On note \overline{x} la valeur algébrique de la longueur x et on définit le grandissement γ par la relation :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}}.$$

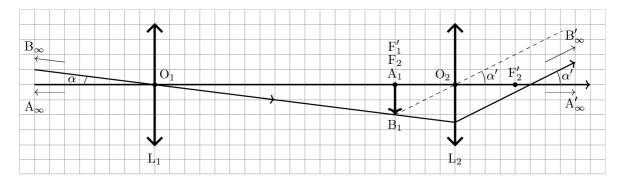
- b) Déterminer la valeur numérique de γ

Entraînement 3 — Schéma optique d'une lunette astronomique afocale.

Le schéma ci-dessus modélise une lunette astronomique afocale, où un carreau correspond à une longueur réelle de $2.5\,\mathrm{cm}$.

Calculer les distances algébriques suivantes :

- a) $\overline{O_1F_1'}$
- b) $\overline{O_2F_2}$
- c) $\overline{O_2O_1}$
- d) $\overline{A_1F_2'}$


Entraı̂nement .4 — Grossissement d'une lunette astronomique afocale.

0000

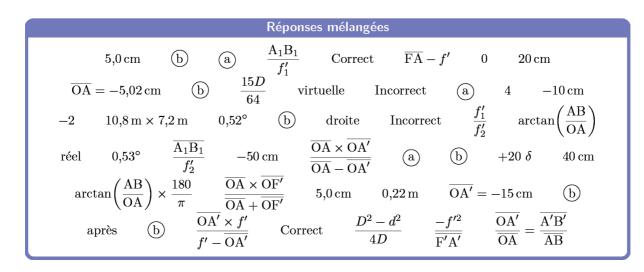
On considère la lur tte astronomique afocale schématisée dans l'entraînement précédent.

Elle est constituée d'un objectif (lentille convergente L_1) et d'un oculaire (lentille convergente L_2) alignés sur le même axe optique.

On introduit les grandeurs suivantes :

- la distance focale image de l'objectif, notée f_1'
- $\bullet\,$ la distance focale image de l'oculaire, notée f_2'
- l'objet lointain observé par la lunette, noté $\overline{A_{\infty}B_{\infty}}$
- \bullet l'image intermédiaire de l'objet par l'objectif, notée $\overline{{\rm A}_1{\rm B}_1}$
- l'image à l'infini de l'image intermédiaire par l'oculaire, notée $\overline{A_\infty'}B_\infty'$
- \bullet le diamètre apparent α de l'objet
- le diamètre apparent α' de l'image

On définit le grossissement de la lunette, noté G, comme le rapport du diamètre apparent de l'objet observé à la lunette sur le diamètre apparent réel de l'objet.


Autrement dit, on pose

$$G = \frac{\alpha'}{\alpha}.$$

Dans cet entraînement, les angles ne seront pas orientés et on travaillera avec des longueurs plutôt que des valeurs algébriques.

a) Exprimer α en fonction de A_1B_1 et d'une distance focale.	
b) Exprimer α' en fonction de A_1B_1 et d'une distance focale.	
c) Exprimer G en fonction de f'_1 et de f'_2 .	
1) D(1 1 1 1 G	
d) Déterminer la valeur de G .	

Optique :feuille 3-4

