Fiche n° 12. Approche énergétique en mécanique
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Corrigés

12.2 a) L’axe est ici orienté vers le bas, on a done Ep,(y) = —mgy + K1. On veut E,p(£) = 0, d'olt Ky = mg¥.
Finalement, on a Epp(y) = mg(f — y).

12.2 b) On peut raisonner de deux manieres :

e La coordonnée verticale (axe de ¢) z est lide & x par z = zsin(a). On a done Epp = mgx sin(e) + Ko.

[énergie potentielle étant nulle en z = H, on a Epp(xz) = mg(zsin(a) — H).

e Dans le repire (O, ez, ey), ona ¢ = —gsin(a)es — gcos aey,.
On en déduit le travail élémentaire pour un déplacement selon « :
W = —mgsin(a) de = —d(mgz sin(a) + K2) = — dEp,.

On en déduit que Epp(x) = mgx sin(a) + Ka.

L’¢nergic potentielle devant étre nulle en S, qui correspond a x = ,ona Ko =—mgH, d’olt le résultat.

sin(ev)

12.2 ¢) Dans la base polaire, I'accélération de la pesanteur s’éerit ¢ = geos(f)eyr — gsin(f)es. Donce, le travail

élémentaire pour un déplacement sur le cercle (selon eg) est

W = mg - dOM = —mgsin(0)Rd0 = — d(—mgR cos(0) + K3) = — dEpp.

On a donc Epp(0) = —mgRcos(€) + K3, et comme on veut Epp(w/2) =0, on a Kz = 0. Ainsi, on a

E,p(0) = —mgR cos(6).
12.2 d) Fixons un axe (Oz) vertical ascendant avec O au centre du cercle. L'énergie potentielle de pesanteur
s'¢erit alors By, = mgz + Ky, Or, on a z = reos(y) d'on B, = mgr cos(y) + Ky.
La convention choisie (Epp(¢p = 0) = Eo) entraine que
mgr cos(0) + Ky = Eo d'ot K4 = Eo — mgr.
Finalement, on trouve
Epp = mg-r( cos(1p) — 1) + Ebo.
12.4 a) L’axe est orienté vers le bas, la longueur du ressort s’identifie donc directement a la coordonnée y.
4 r R ™ I . 4 3 17 * + o’ .
La force de rappel s’écrit F' = —k(y—~£p)e,. On en déduit done (en calculant le travail élémentaire ou par intégration
directe) que
) 1 V2 ~te
Epe(y) = Sk(y — £o)” + C*.

s a e L2 4. .
Or, on veut E,o(y = 0) = 0, d’on C*° = —;kﬁ’oz. Ainsi, on a

Epe(y) = ghly — o) — ghto®.



12.4 b) On calcule d’abord la longueur £ du ressort en fonction de la coordonnée z. Un peu de trigonométrie
donne cos(f8) = % d'on £ = ﬁ Par rapport a la coordonnée £ (mesurée le long de T'axe (OA)), I'énergic
potentielle vaut (k’um : - _
E,.(6) = ék(f —f)* + .
On a done 5

! 2 — fo -+ C.'te‘

Eyuli) = E!<: 6@

On détermine alors la constante afin d’avoir Epe(A) = 0. Lorsque le point M est en A, la longueur du ressort vaut

LA) = L On résout done :

sin(3)
2 2
1 L te . qLe ]- L
Epe(P(A)‘,' = Ek’ m — ED - C-t =1 ce qu (1[)111[(‘- C-t = —Ek m — Eo
Finalement, on trouve
2 2
1 x 1 L
Eolz)=-k| —— — 4 — k| ———4¢
el®) =M o TP 2"\ sin(g) ~ °

e La longueur du ressort de gauche vaut z. La force exercée par celui-ci sur la masse s’exprime done comme
»
Fy = —k(z — #y)e,, d’ott une énergie potentielle (&4 une constante pres) By g = Ek(a: —£)”.
e La longueur du ressort de droite vaut 2¢g — z. La force exercée par celui-ci sur la masse s’exprime donc comme
| g
Fg = k(280 — z — by)es = k(fy — x)e, (attention au signe devant k qui doit étre cohérent), d’olt une énergie

. N 1
potentielle (& une constante pres) Epq = ik(ﬁo — 93)2‘

En additionnant les deux contributions, et en demandant que Epe (fo) = Eo, on obtient alors Epe(z) = Eg—l—k(m—fn)z.

SW = F -dOM = —ﬁ 7 - dOM.

Or, par construction, les vecteurs vitesse et déplacement ¢lémentaire sont colinéaires, d’ou :
W = —hdOM.

Par intégration, on a donc

W = —h dOM = —h/ dOM = —ht.
AB AB

Les autres cas se caleulent semblablement.

12.5 ¢)  Sila foree était conservative, son travail ne dépendrait que des points de départ et d’arrivée, et serait
done nul sur un chemin fermé (points de départ et d’arrivée confondus). Ce n’est pas le cas pour les chemin ¢) et
d), la force n’est donc pas conservative.

12.6 On applique le théoréme de I'énergie cinétique entre le point de départ et le point d’arrét. L'entrainement
précédent permet d’affirmer que le travail de la force de frottement vaut —hd. On a donc :

muvo 2

2h

AE.=0— évaQ = —hd done d=



12.7 a) La masse n'est soumise qu’au poids, force conservative, et a la tension du fil qui ne travaille pas car
elle reste orthogonale au mouvement. L’énergie mécanique se conserve donc entre le point de départ et le point de
rebroussement.

1
o Au départ, E,, = E. = —muwg? (on pose z = 0 pour la position initiale de la masse, et on prend E,(0) =0)

2
e Au moment du rebroussement, E,, = Ep = mgz(6o) = mgl(1l — cos(f)), car on a alors z(6) = £ — £cos(6).
Ainsi, on a
1mv ? = mgl(1 — cos(6p)) donc cos(Bo) =1 vo”
— = — cos : “08 =1——.
2o g osive © oS\ 290

12.8 a) En appliquant le théoreme de "énergie mécanique entre le début et la fin de la chute libre on a :

1
Em(\tﬁn c‘hute) - Em (tdébut chute) = Em'vOQ - mg(H - FD)

Les forces étant conservatives, 'énergie mécanique est conservée et on a donc

i § . —1
vy = -\/QQ(H — o) = -\/2 x 9,81m-s=2 x (2,0m —0,30m) = 5,8m - s
12.8 b) La masse n'est soumise qu'a des forces conservatives : son poids, ainsi que la force de rappel du ressort.

On peut done appliquer la conservation de 'énergie mécanique entre la position d’arrivée sur le ressort z = £y, et
la position d’altitude minimale z = z,, (pour laquelle la vitesse s’annule). On a done

ém’voz + mgly = mgzn, + %k(’zm - 50)2‘

- . 1, 9 1, 5 1 2
Ainsi, apres calcul, on trouve Ekzm + (mg — kfo)zm + gk‘fo — Emvo —mgly = 0.
On ne demande qu'une réponse numérique, on peut done passer aux valeurs numériques pour simplifier la résolution :

=

2. o9r
500z, — 290,22m + 25,4 = 0.
Cette équation posséde deux solutions, z;p & 0,47m et z2 &~ 0,11 m. La premiére solution correspond & une position
supérieure en altitude a la position initiale, et n’est done pas celle qui nous intéresse. On retient done z,, = 0,11 m.
12.8 ¢) La masse n’étant soumise qu’a des forces conservatives, elle revient en & = £y avec la méme vitesse
qu’elle avait en arrivant, a savoir vg. Elle atteint donc une altitude maximale quand sa vitesse s’annule en 2 = H.
12.9 a)  On choisit un axe vertical descendant de maniere a pouvoir identifier z a la distance OM, qui est la
longueur du ressort.
Afin de déterminer 'équation différentielle, on souhaite appliquer le théoréme de la puissance cinétique. Or,
- . » > .
e la puissance du poids vaut mg - ¥ = mgz (axe descendant) ;
e la puissance de la force de rappel vaut —k(z — €y)e; - ¥ = —k(z — €o)2;
. . . .9
e la puissance de la force de frottements fuides vaut —ad/ - ¥ = —az”.

Le théorcme de la puissance cinétique donne alors :

(IEC_ d sl 5 L . . .2
TR (sz ) =mzZ=mgz — k(z— fo)z — a2
2 ke
D’on finalement : £ + Ez' 4+ —z=g+ =
m m m



12.9 b) On détermine la position d’équilibre en projetant la premiere loi de Newton sur P'axe vertical descendant :

m
mg — k(zeq —Lo) =0 donc  zeq =€y + Tg
On obtient z.q > fo, ce qui est physiquement cohérent.

On pose done ¢ = z — zeq. En réinjectant dans 'équation différentielle obtenue précédemment, on obtient :

ooy k mgy kty A P
C-I-EC-I-E(C-I-ED—I-T)—Q—I-?H donc C+mg+mci(]'

On peut également obtenir cette équation en écrivant la force de rappel par rapport a la variable { et en en déduisant
l’énergie potentielle associée.

12.10 a) Au voisinage de = 07, la fonction énergie potentielle est équivalente a 8/x7. Ici, la fonction représentée
par le graphe tend vers —oo en 0, on a nécessairement 5 < 0.

Pour @ — +o0, la fonction énergie potentielle est équivalente & a/a. lei, la fonction représentée par le graphe tend

vers 07 en 400, on a nécessairement a > 0.

Ce potentiel est physiqguement impossible car Ep(x — 0F) — —oo : Uénergie potentielle n'est pas bornée inférieu-
rement, on pourrait donc théoriquement utiliser ce potentiel pour extraire une quantité infinie d’énergie.

e Déterminons le minimum de Pénergie potentielle E,(0) = mgf(1 — cos(@)) en cherchant la valeur 6., telle que

dE,
de

4’E,

(Geq) = (] Ct- W

(Beq) > 0.
L, dE, .
La premiere égalité donne W[Geq) = mglsin(f.q) = 0 et donc Ooq = 0 [7].

2

d
Finalement, en tenant compte de (Beq) > 0, on trouve foq = 0 [27].

it
dg?
e On anurait pu remarquer que les minima de mgé(1 — cos(8)) correspondent anx maxima de cos(#), qui sont bien
les Beq = 0 [27].

12.11 b) On dérive 'énergie potentielle, en écrivant :

dFE,

= Kz + Az
dz
y IE /
L’ équation il 0 a alors trois solutions : z; =0, 2 = _E ot 29 = — —E,
dz A A
Il s’agit des positions d’équilibre de ce potentiel.
d°E, o
On dérive une seconde fois afin d’étndier la stabilité. On a oz = K+ 3Az°.
dz
Finalement, on obtient : 2
4By )=k >0
Z=z)=kK
dz? !
d’E K
cleP (2 =22) =K+ 3\ (_X) = -2k <0
I’E.
C (2 =2) =+ 3\ (7;) — 9k <0,

Seule z1 = 0 est une position d’équilibre stable.



12.11 ¢) On calcule la dérivée de I'énergie potentielle :

dE,

= 2U018$0’3x2
dx

. dE, | . P,
qui montre que s’annule pour z = 0, qui est donc une position d’équilibre.
Pour étudier sa stabilité, on dérive une seconde fois :

2
d°E,
da?

— 2UoB(1 + 282%)e=”

qui en & = 0 vaut 2UpB3 > 0. Cette position d’équilibre est done bien stable.

12.11 d) On calcule la dérivée de I'énergie potentielle :

dE
P = 2FEpsin(¢ — a) cos(¢ — a).
do
o dE, T o - y
Ainsi, 1% s'annule pour ¢ = a et ¢ = a + 5 qui sont les positions d’équilibre dans intervalle [0, /.
(
Afin d’étudier leur stabilité, on dérive une seconde fois :
(]2Ep . 2 .2
152 = 2Ey(cos™(¢p — a) —sin“ (¢ — a)).
A°E, i ) y
e On calcule ensuite 52 (¢ = a) = 2Eq. Ce dernier terme étant positif, la position d’équilibre ¢ = a est done
(
stable.
: ISR d°E, . S ) A
e Pour I'autre position d’équilibre, on a W((j) =a+ m/2) = —2F,. Cette dérivée seconde étant négative, la
C

position d’équilibre ¢ = a + 7/2 est instable.

12.13 d) Le mouvement entre a2 et o3 correspond a un état 1ié : ¢’est un mouvement dans un puits de potentiel.
Comme le mouvement est a un degré de liberté, il est également périodique. Cependant, les positions extrémes
étant éloignées de la position movenne (d’équilibre z3), ce mouvement n’est pas harmonique.

12.14 On a vu précédemment que les trajectoives correspondant a énergie mécanique Fa sont des états de
diffusion, le point matériel peut done bien s’échapper a 'infini.

Le mouvement du point étant conservatif, on applique la conservation de 'énergie mécanique entre le départ et
« Parrivée » a linfini : on a

1 2F 2 x 1300kg - m? - 572 _
Es = Emvgo donc Voo = \/Wg = \/ 253gkg111 - 33,6m s !







