Correction entrainement 2

1 a)
$$\frac{\pi}{180} \times \alpha_{\text{deg}}$$

1 b).....
$$60 \times \alpha_{\text{deg}}$$

3 b)
$$\frac{\pi}{2} - i$$

$$\mathbf{3} \ \mathrm{c}) \ldots \left| \arcsin \left(\frac{n_1}{n_2} \sin(i) \right) \right|$$

3 d) ..
$$\boxed{\frac{\pi}{2} - \arcsin\left(\frac{n_1}{n_2}\sin(i)\right)}$$

5 a)
$$r - i$$

5 b)
$$\pi - 2i$$

6 a)
$$(\alpha_1 + \alpha_2) - \pi$$

9 a)
$$\sqrt{1 - \frac{\sin^2(\theta_i)}{n_1^2}}$$

$$\mathbf{9} \text{ b)} \dots \qquad \boxed{\cos(\theta_r) > \frac{n_2}{n_1}}$$

9 c)
$$\sin(\theta_i) < \sqrt{n_1^2 - n_2^2}$$

10 b).......
$$3,74 \times 10^{-19}$$
 J

12 a)
$$2.26 \times 10^8 \,\mathrm{m \cdot s^{-1}}$$

.2 a) On a
$$\alpha = 35^{\circ} + 0.65 \times 60' = 35^{\circ}39'$$
.

.2 b) L'angle β vaut 98° et 15 minutes d'angle, c'est-à-dire $\beta = 98 + 15/60 = 98,25$ °.

ı radians, on a $\beta = 98,25^{\circ} \times \frac{\pi}{180^{\circ}} = 1,715 \,\mathrm{rad}$ (on garde 4 chiffres significatifs, comme la donnée de départ).

.2 c) On a
$$\gamma = 1{,}053 \times \frac{180^{\circ}}{\pi} = 60{,}33^{\circ}$$
. Or, 0,33° correspondent à 0,33 × 60 = 20′. Donc $\gamma = 60^{\circ}20'$.

.3 a) On a $\alpha = i$. Il s'agit de la loi de Snell-Descartes pour la réflexion.

.3 b) On a
$$\alpha + \beta = \frac{\pi}{2}$$
 et $\alpha = i$, donc $\beta = \frac{\pi}{2} - i$.

.3 c) Loi de Snell-Descartes pour la réfraction donne : $n_1 \sin(i) = n_2 \sin(\delta)$. Donc $\delta = \arcsin\left(\frac{n_1}{n_2}\sin(i)\right)$.

.4 a) Loi de Snell Descartes pour la réfraction donne : $n_1 \sin(i) = n_2 \sin(r)$. On obtient pour r:

$$r = \arcsin\left(\frac{n_1}{n_2}\sin(i)\right)$$
 et donc $r = \arcsin\left(\frac{1}{1,45} \times \sin(24,0)\right) = 16,3^{\circ}$.

tention à bien régler la calculatrice en degré ou à convertir l'angle en radians.

4 b) Si la calculatrice est réglée en degré, on a : $r = \arcsin\left(\frac{1}{1,45}\sin(0,674 \times \frac{180}{\pi})\right) = 25,5^{\circ}$.

4 c) On a
$$i = \arcsin\left(\frac{n_2}{n_1}\sin(r)\right)$$
 donc $i = \arcsin\left(\frac{1,45}{1}\sin 15,0\right) = 22,0^{\circ}$.

5 a) On a $D_t = r - i$. Attention, i et r sont orientés dans le sens trigonométrique, alors que D_t est orienté ns le sens horaire.

.....

5 b) On a
$$D_r - (-i) + i = \pi$$
 donc $D_r = \pi - 2i$.

6 a) On utilise le fait que la somme des angles d'un quadrilatère est égale à 2π dans OIAJ. Donc, on a

$$2\pi = A + \frac{\pi}{2} + \frac{\pi}{2} + (2\pi - (\alpha_1 + \alpha_2));$$

si, on a $A = (\alpha_1 + \alpha_2) - \pi$.

6 b) On utilise le fait que la somme des angles d'un triangle est égale à π dans IAJ. Donc, on obtient

On utilise le fait que la somme des angles d'un triangle est egale a π dans IAJ. Donc, on obtient $A = A + (\frac{\pi}{2} - r) + (\frac{\pi}{2} - r')$, et ainsi A = r + r'.

- 7 a) On a $\frac{n_1}{n_2}\sin(i) = \frac{1.5}{1.3}\sin(44^\circ) = 0.8 < 1$. Il existe un rayon réfracté, il n'y a donc pas réflexion totale.
- 7 b) Comme n_1 est supérieur à n_2 , il existe un tel angle limite, qui est $i_{\ell} = \arcsin\left(\frac{n_2}{n_1}\right) = \arcsin\left(\frac{1,3}{1,5}\right) = 60^{\circ}$.
- **8** a) D'après la loi de Snell-Descartes, on a $n_1 \sin(i) = n_2 \sin(r)$. Donc,

$$n_2 = n_1 \frac{\sin(i)}{\sin(r)} = 1,37 \times \frac{\sin(20,0^\circ)}{\sin(22,0^\circ)} = 1,25.$$

- 8 b) On observe une réflexion totale si $\frac{n_1}{n_2} \times \sin(i) > 1$ donc si $n_2 < n_1 \times \sin(i) = 1,37 \times \sin(60,0^\circ) = 1,18$.
- 8 c) L'angle limite au-delà duquel il y a réflexion totale est $i_{\ell} = \arcsin\left(\frac{n_2}{n_1}\right)$. Un milieu ne peut pas avoir un indice plus petit que 1 (cela signifierait que la lumière s'y propage plus rapidement que dans le vide, ce qui n'est pas possible). Donc, pour $n_1 = 1,37$, le plus petit angle limite de réflexion totale est

$$i_{\ell,min} = \arcsin\left(\frac{1}{1,37}\right) = 46,9^{\circ} > 40,0^{\circ}.$$

Donc : non, il n'existe aucun milieu 2 qui permette d'observer une réflexion totale dans ces conditions.

9 a) On a $\cos(\theta_r) = \sqrt{1 - \sin^2(\theta_r)} = \sqrt{1 - \frac{\sin^2(\theta_i)}{n_1^2}}$.

- 9 b) Il s'agit d'un triangle rectangle, donc $i = \frac{\pi}{2} \theta_r$. Donc la relation équivaut à $\frac{n_1 \sin(\frac{\pi}{2} \theta_r)}{n_2} > 1$, c'est-à-dire à $\frac{n_1 \cos(\theta_r)}{n_2} > 1$ et donc à $\cos(\theta_r) > \frac{n_2}{n_1}$.
- 9 c) On a $\sqrt{1 \frac{\sin^2(\theta_i)}{n_1^2}} > \frac{n_2}{n_1}$ donc $1 \frac{\sin^2(\theta_i)}{n_1^2} > \left(\frac{n_2}{n_1}\right)^2$ dont on déduit

$$\sin^2(\theta_i) < n_1^2 \left(1 - \left(\frac{n_2}{n_1}\right)^2\right) = n_1^2 - n_2^2.$$

nsi, on a $\sin(\theta_i) < \sqrt{n_1^2 - n_2^2}$.

.....

10 a) On a
$$f = \frac{c}{\lambda_0} = \frac{3,00 \times 10^8 \,\mathrm{m \cdot s^{-1}}}{532 \,\mathrm{nm}} = 5,64 \times 10^{14} \,\mathrm{Hz} = 564 \,\mathrm{THz}.$$

10 b) On a $E = hf = 6.63 \times 10^{-34} \,\text{J} \cdot \text{s} \times 5.64 \times 10^{14} \,\text{Hz} = 3.74 \times 10^{-19} \,\text{J}.$

Au passage d'un dioptre, la fréquence et l'énergie d'un photon sont inchangées. En revanche, la vitesse propagation de la lumière et la longueur d'onde dépendent de l'indice optique.

.....

12 a) On a
$$v = \frac{c}{n} = \frac{3,00 \times 10^8 \text{ m} \cdot \text{s}^{-1}}{1,33} = 2,26 \times 10^8 \text{ m} \cdot \text{s}^{-1}.$$

12 b) On a
$$\lambda = \frac{v}{f} = \frac{c}{nf} = \frac{\lambda_0}{n} = \frac{532 \text{ nm}}{1,33} = 400 \text{ nm}.$$