Colles de mathématiques : semaine du 17/02

PCSI 1

Partie reconduite du programme précédent

PLAN DU COURS

Développements limités

- Opérations sur les DL (suite): intégration (ex de Arctan), composée, quotient (ex du DL₃(0) de tan).
- Utilisation des DL: calcul de limites, détermination de tangentes, recherche d'asymptotes obliques, position relative dans un voisinage.

Espaces vectoriels sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- Définition, règles de calcul.
- Exemples de référence : \mathbb{K}^n , $\mathcal{M}_{n,p}(\mathbb{K})$, $\mathcal{F}(A,\mathbb{K})$ où A ensemble, $\mathcal{F}(I,\mathbb{R})$, suites.
- Sous-espaces vectoriels, intersection de sous-espaces, exemples de sous-espaces: fonctions continues, dérivables, fonctions polynomiales, solutions d'une EDLH; suites convergentes, convergentes vers 0, suites récurrentes linéaires d'ordre 2.
- Combinaisons linéaires. Espaces vectoriels engendrés, familles génératrices.
- Familles libres, cas des familles à 1 ou 2 vecteurs.

Remarques. Pas encore de sommes de sous-espaces, de base ni de dim finie.

QUESTIONS DE COURS

Intégration de DL : Énoncer la propriété d'intégration de $DL_n(0)$. Application : DL de Arcsin à l'ordre 6 à calculer.

Tangente et asymptote : Enoncer les propriétés de détermination d'une tangente et d'une asymptote oblique.

Sous-espace vectoriel : Définition de sous-espace vectoriel.

Montrer qu'une intersection de sous-espaces est un sous-espace.

Espace vectoriel engendré : Définir $Vect(e_1, \dots, e_n)$ et démontrer que c'est un sous-espace de E.

Famille génératrice : Définition de famille génératrice, deux ptés d'invariance à énoncer (adjonction d'un vecteur de l'esp engendré, ajout d'une CL des autres), démo de la première.

Colles de mathématiques : semaine du 17/02

Nouvelle partie

PLAN DU COURS

Espaces vectoriels sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

• Somme de deux sous-espaces, somme directe, sous-espaces supplémentaires.

Espaces de dimension finie

PCSI 1

- Définition d'espace de dimension finie.
- Parties libres maximales, génératrices minimales. Equivalence avec la notion de base.
- · Bases canoniques, coordonnées.
- Théorème de la base incomplète. Existence de base.
- Dimension d'un espace de dimension finie. Droites, plans.
- Caractérisation d'une base quand la dimension est connue.
- Dimension d'un sous-espace d'un espace de dimension finie. Cas d'égalité.

Remarques. Pas encore la formule de Grassman, ni de caractérisation des supplémentaires en dimension finie. Pas encore de rang d'une famille.

QUESTIONS DE COURS

Somme de sous-espaces : Th sur la somme de deux sous-evs, déf et caractérisation d'une somme directe (+démo), déf de ss-evs supplémentaires.

Parties "optimales": Au choix de l'examinateur/rice

- $\bullet\,$ définir partie libre maximale et montrer "libre maximale \implies base" ou bien
- définir génératrice minimale et montrer "génératrice minimale \implies base".

Notion de base : Définition de base. Existence et unicité des coordonnées (à démontrer). Bases canoniques de \mathbb{K}^n , $\mathcal{M}_{n,p}(\mathbb{K})$ et $\mathbb{K}_n[X]$.

Notion de dimension : Lemme de Steinitz (lien entre cardinal d'une famille génératrice et d'une famille libre), définition de dimension, justification de la déf.

Caractérisation d'une base quand on connaît la dimension (énoncé+démo).