Chapitre 14 : Applications linéaires

Dr Nicolas Provost - PCSI1 - LMB

Dans tout le chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} est le corps des scalaires.

1 Généralités

1.1 Définitions et propriétés élémentaires

Définition. Soient E et F deux \mathbb{K} -espaces vectoriels. On dit qu'une application $f: E \to F$ est <u>linéaire</u> si elle respecte les opérations :

<u>Addition interne</u>: $\forall u, v \in E, f(u+v) = f(u) + f(v).$

<u>Produit externe</u>: $\forall u \in E, \forall \lambda \in \mathbb{K}, f(\lambda.u) = \lambda.f(u).$

On note $\mathcal{L}_{\mathbb{K}}(E,F)$ l'ensemble des applications linéaires de E dans F.

Lorsque E = F, on dit que f est un <u>endomorphisme</u> et on note plus simplement $\mathcal{L}_{\mathbb{K}}(E)$ l'ensemble des endomorphismes de E.

 \otimes Pour montrer que f est linéaire, il suffit de vérifier directement la combinaison linéaire

$$\forall u, v \in E, \forall \lambda \in \mathbb{K}, f(u + \lambda v) = f(u) + \lambda f(v). \tag{1}$$

Proposition 1.1. L'ensemble des applications linéaires $\mathcal{L}_{\mathbb{K}}(E,F)$ est un \mathbb{K} -espace vectoriel.

Proposition 1.2. Soient E, F et G trois \mathbb{K} -espaces vectoriels. Soient $f: E \to F$ et $g: F \to G$ deux applications linéaires alors la composée $g \circ f: E \to G$ est une application linéaire.

& La composée est une opération associative, distributive par rapport à la somme à droite et à gauche mais pas commutative.

Définition. Pour un endomorphisme $f \in \mathcal{L}_{\mathbb{K}}(E)$, on définit les puissances par récurrence :

$$f^{0} = id_{E} \text{ et pour tout } n \in \mathbb{N}, f^{n+1} = f^{n} \circ f.$$
 (2)

Théorème 1.3 (Formule du binôme de Newton). Si f et g sont deux endomorphismes de E qui commutent (i.e. $f \circ g = g \circ f$) alors :

$$(f+g)^n = \sum_{k=0}^n \binom{n}{k} f^k \circ g^{n-k}.$$
 (3)

1.2 Image et Noyau d'une application linéaires

Définition. Pour une application linéaire $f: E \to F$ entre deux \mathbb{K} -espaces vectoriels. On définit les sous-espaces vectoriels suivants :

Le noyau : $\operatorname{Ker} f = \{x \in E \text{ tel que } f(x) = 0_F\}$ sous-espace de E.

L'image: $Im f = \{f(x) \text{ pour } x \in E\} \text{ sous-espace de } F.$

- \otimes Le noyau est défini à l'aide d'une équation linéaire $f(x) = 0_F$. Dans la pratique, on le détermine en résolvant un système linéaire homogène.
- & L'image est définie par un paramétrage. On peut préciser son expression avec le résultat suivant dans le cas de la dimension finie.

Proposition 1.4. Si E est de dimension finie engendré par une famille $(e_1,...,e_n)$ alors :

$$\operatorname{Im} f = f(\operatorname{Vect}_{\mathbb{K}}(e_1, ..., e_n)) = \operatorname{Vect}_{\mathbb{K}}(f(e_1), ..., f(e_n)). \tag{4}$$

Théorème 1.5. Soient $f: E \to F$ une application linéaire entre deux \mathbb{K} -espace vectoriel. On a :

- a) f est injective ssi $Ker f = \{0_E\}$.
- **b)** f est surjective ssi Im f = F.

Proposition 1.6. Soit $f: E \to F$ et $b \in F$. Les équations f(u) = b sont dites linéaires.

Si $b \in \operatorname{Im} f$ alors l'équation est compatible et pour $u_p \in E$ une solution particulière alors l'ensemble des solutions est $S = u_p + \operatorname{Ker} f$.

 $Si\ b \notin Im f\ alors\ l'équation\ n'admet\ pas\ de\ solution\ \mathcal{S} = \emptyset.$

2 Modes de définition et endomorphismes remarquables

Proposition 2.1. Si E est de dimension finie alors toute application linéaire $f: E \to F$ est entièrement déterminée par l'image d'une base de E.

Proposition 2.2. Si $E = E_1 \oplus E_2$ se décompose en somme directe alors toute application linéaire $f: E \to F$ est entièrement déterminée par ses restrictions $f|_{E_1}$ et $f|_{E_2}$.

Définition. On dispose d'endomorphismes remarquables de E.

Les applications λid_E sont les <u>homothéties</u> de rapport $\lambda \in \mathbb{K}^*$.

Si $E = E_1 \oplus E_2$ est une décomposition en somme directe, on définit le <u>projecteur</u> sur E_1 le long de E_2 par :

$$p|_{E_1} = id_{E_1} \ et \ p|_{E_2} = 0_{\mathcal{L}_{\mathbb{K}}(E_2)}. \tag{5}$$

De plus, on définit la symétrie par rapport à E_1 le long de E_2 par :

$$s|_{E_1} = id_{E_1} \ et \ s|_{E_2} = -id_{E_2}.$$
 (6)

En particulier, $si \ x = x_1 + x_2 \in E_1 \oplus E_2 \ alors \ p(x) = x_1 \ et \ s(x) = x_1 - x_2$.

Proposition 2.3. Un endomorphisme p est un projecteur ssi $p^2 = p$.

Dans ce cas, c'est le projecteur sur Imp le long de Kerp.

Proposition 2.4. Un endomorphisme s est une symétrie ssi $s^2 = id_E$.

Dans ce cas, c'est la symétrie par rapport aux <u>vecteurs invariants</u> $Ker(s-id_E)$ le long des <u>vecteurs contravariants</u> $Ker(s+id_E)$.

3 Isomorphismes

Définition. On appelle isomorphisme toute application linéaire bijective.

On note $Isom_{\mathbb{K}}(E,F)$ l'ensemble des isomorphismes de E vers F.

On dit que deux \mathbb{K} -espaces vectoriels F et G sont <u>isomorphes</u> si il existe un isomorphisme entre eux. Si E = F, les endomorphismes bijectifs sont appelés <u>automorphismes</u>. L'ensemble des automorphismes de E s'appelle le groupe linéaire de E et se note GL(E).

Proposition 3.1. Pour $f: E \to F$ et $g: F \to G$ deux isomorphismes, on a :

- a) La réciproque $f^{-1}: F \to E$ est un isomorphisme.
- b) La composée $g \circ f$ est un isomorphisme.
- c) Le groupe linéaire GL(E) est stable par composition, inverse et puissance.
- & L'isomorphie des espaces est une relation d'équivalence.

Théorème 3.2. Soit E de dimension finie et \mathcal{B} une base de E. Soit $f: E \to F$ une application linéaire.

- a) f est injective ssi $f(\mathcal{B})$ est une famille libre.
- b) f est surjective ssi $f(\mathcal{B})$ est une famille génératrice de F.
- c) f est un isomorphisme ssi $f(\mathcal{B})$ est une base de F.

Corollaire 3.3. Soient E un \mathbb{K} -espace vectoriel de dimension finie et F un \mathbb{K} -espace vectoriel quelconque. Les espaces sont isomorphes ssi E et F ont la même dimension.

Théorème 3.4. Soit $f: E \to F$ une application linéaire en dimension finie. L'application f est un isomorphisme ssi deux des trois assertions suivantes est vérifiées :

- f est injective.
- f est surjective.
- $-\dim_{\mathbb{K}} E = \dim_{\mathbb{K}} F.$

Corollaire 3.5. Soit $f: E \to E$ un endomorphisme en dimension finie. On a les équivalences :

$$f$$
 est un automorphisme $\Leftrightarrow f$ est injective $\Leftrightarrow f$ est surjective. (7)

 \otimes La dérivation $D: \mathbb{K}[X] \to \mathbb{K}[X]$ fournit un exemple d'endomorphisme en dimension infinie qui est surjectif mais pas injectif.

4 Rang d'une application linéaire

Définition. On dit qu'une application linéaire $f: E \to F$ est de <u>rang finie</u> si Imf est un sous- \mathbb{K} -espace vectoriel de dimension finie. Dans ce cas, on note $\operatorname{rg}_{\mathbb{K}}(f) = \dim_{\mathbb{K}}(\operatorname{Im} f)$.

Proposition 4.1. Si l'espace d'arrivé F est de dimension finie alors toute application linéaire $f: E \to F$ est de rang finie et :

$$\operatorname{rg}_{\mathbb{K}} f \leq \dim_{\mathbb{K}} F$$
 avec égalité ssi f est surjective. (8)

Proposition 4.2. Si l'espace de départ E est de dimension finie alors toute application linéaire $f: E \to F$ est de rang finie et :

$$\operatorname{rg}_{\mathbb{K}} f \leq \dim_{\mathbb{K}} E \text{ avec \'egalit\'e ssi } f \text{ est injective.}$$
 (9)

 \otimes Dans ce cas, on dispose en particulier d'une méthode de calcul à l'aide d'une base $\mathcal{B}_E = (e_1, ..., e_n)$ de E:

$$\operatorname{rg}_{\mathbb{K}} f = \operatorname{rg}_{\mathbb{K}}(f(\mathcal{B}_E)) = \operatorname{rg}_{\mathbb{K}}(f(e_1), ..., f(e_n)). \tag{10}$$

Proposition 4.3. Pour deux applications linéaires $f: E \to F$ et $g: F \to G$ de rangs finies, on a :

$$rg_{\mathbb{K}}(g \circ f) \le \min(rg_{\mathbb{K}}f, rg_{\mathbb{K}}g). \tag{11}$$

 $Si\ u\ est\ un\ automorphisme\ de\ E\ et\ v\ un\ automorphisme\ de\ F,\ on\ obtient\ en\ particulier:$

$$\operatorname{rg}_{\mathbb{K}}(f \circ u) = \operatorname{rg}_{\mathbb{K}} f \ et \ \operatorname{rg}_{\mathbb{K}}(v \circ f) = \operatorname{rg}_{\mathbb{K}} f. \tag{12}$$

Théorème 4.4 (Théorème du rang). Soit $f: E \to F$ une application linéaire. On suppose E de dimension finie alors :

$$\dim_{\mathbb{K}} E = \dim_{\mathbb{K}} (\operatorname{Ker} f) + \operatorname{rg}_{\mathbb{K}} f. \tag{13}$$

 \otimes Le démonstration utilise la forme géométrique suivante du résultat. Pour S un supplémentaire de Kerf dans E (i.e. $E = \operatorname{Ker} f \oplus S$) la restriction $\tilde{f}: S \to \operatorname{Im} f, u \mapsto f(u)$ est un isomorphisme.

Définition. On dit que $f: E \to \mathbb{K}$ est une <u>forme linéaire</u> si f est linéaire à valeurs dans \mathbb{K} . On dit que H est un hyperplan de E si il <u>existe une droite</u> supplémentaire D (i.e. $E = H \oplus D$)

 \otimes Si H est un hyperplan alors toute droite D non contenue dans H convient à la définition.

Proposition 4.5. H est un hyperplan de E ssi il existe une forme linéaire $f: E \to \mathbb{K}$ non nulle telle que $H = \operatorname{Ker} f$.