Devoir Surveillé de Mathématiques n° 4 le samedi 16 décembre 2023 - durée 3h

Exercice 1 : Etudier les suites suivantes et déterminer leurs limites éventuelles :

a)
$$u_n = \sum_{k=0}^n \frac{\lfloor 3^k \sqrt{2} \rfloor}{3^n}$$
 b) $\begin{cases} v_{n+1} = v_n^2 + \frac{3}{16} \\ v_0 = \frac{1}{2} \end{cases}$ c) $\begin{cases} w_{n+2} = w_{n+1} - w_n \\ w_0 = 1 \text{ et } w_1 = \frac{1}{2} \end{cases}$

Exercice 2 : On considère la suite $S_n = \sum_{k=0}^{n-1} \frac{(-1)^k}{k+1}$. Soit $n \in \mathbb{N}$. On note $u_n = S_{2n}$ et $v_n = S_{2n+1}$.

- a) Montrer que $u_{n+1} u_n = \frac{1}{(2n+1)(2n+2)}$ et $v_{n+1} v_n = \frac{-1}{(2n+2)(2n+3)}$.
- b) Montrer que (u_n) et (v_n) converge vers une limite commune $l \in [0,1]$.
- c) En déduire que la suite (S_n) converge.

Problème I : On recherche les fonctions $f: \mathbb{R} \to \mathbb{R}$ C^0 sur \mathbb{R} telle que $\forall x \in \mathbb{R}, f(x) = f(x^2)$. Soit $x_0 \in \mathbb{R}_+$. On considère la suite récurrente $x_{n+1} = x_n^2$.

- 1. Montrer que f est une fonction paire.
- 2. Montrer que la suite $(f(x_n))_{n\geq 0}$ est constante.
- 3. On suppose $x_0 \in [0,1[$ dans cette question.
 - (a) Montrer que $x_n \to_{+\infty} 0$.
 - (b) En déduire que f est constante sur]-1,1[.
- 4. On suppose désormais que $x_0 > 1$.

Montrer que $x_n \to_{+\infty} +\infty$.

Pourquoi cela n'est pas suffisant pour conclure?

- 5. On construit la suite $(y_n)_{n>0}$ par $y_0=x_0>1$ et $y_{n+1}=\sqrt{y_n}$.
 - (a) Montrer que $(f(y_n))_{n\geq 0}$ est constante.
 - (b) Montrer que $y_n \to_{+\infty} 1$.
 - (c) En déduire que f est constante sur $]1, +\infty[$.
- 6. Montrer que f(0) = f(1) et en déduire que f est constante sur \mathbb{R} .

Problème II : On recherche à étudier la fonction $f(x) = \frac{x \ln(x)}{x^2 - 1}$ définie sur $D_f = \mathbb{R}_+^* \setminus \{1\}$.

- 1. (a) Montrer que $\lim_{t\to 1} \frac{\ln(t)}{t-1} = 1$.
 - (b) En déduire que f se prolonge par continuité en 1.
 - (c) La fonction f se prolonge-t-elle par continuité en 0.
- 2. (a) Montrer que f est dérivable sur D_f et calculer f'(x).
 - (b) Montrer que pour tout u > 1, $\frac{u-1}{u+1} < \frac{1}{2} \ln(u)$.
 - (c) En déduire les variations de f.
- 3. (a) Montrer que f réalise une bijection de [0,1] à valeurs dans $[0,\frac{1}{2}]$.
 - (b) Calculer $\lim_{+\infty} f$ et tracer l'allure de la courbe de f.
 - (c) Montrer que f n'admet pas de point fixe dans $[1, +\infty[$.

N.Provost PCSI1 2023-2024