Analyse asymptotique et Développements limités

Révisions de la semaine 18

Développement de référence au voisinage de 0

```
\begin{array}{ll} x\mapsto \exp(x), & x\mapsto \cos(x), & x\mapsto \sin(x), & x\mapsto \tan(x) \text{ (ordre 5)}, \\ x\mapsto \frac{1}{1-x}, & x\mapsto \ln(1+x), & x\mapsto (1+x)^\alpha, & x\mapsto \operatorname{Arctan}(x). \end{array}
```

Les espaces vectoriels

Définition de la structure et exemple

Ensemble non vide muni d'une addition interne et d'un produit par les scalaires.

Espace vectoriel issue de la géométrie : \mathbb{R}^2 et \mathbb{R}^3 sur \mathbb{R} , \mathbb{K}^n sur \mathbb{K} .

Espace vectoriel issue de l'analyse : $\mathbb{K}^{\mathbb{N}}$ et $\mathcal{F}(I,\mathbb{K})$ sur \mathbb{K} pour I un ensemble.

Espace vectoriel issue de l'algèbre : $\mathbb{K}[X]$ et $\mathcal{M}_{n,p}(\mathbb{K})$ sur \mathbb{K} , \mathbb{C} sur \mathbb{R} .

Sous-espaces vectoriels

Définition et équivalence comme sous-ensemble non vide stable par combinaisons linéaires. Sous-espace $\text{Vect}_{\mathbb{K}}(v_1,...,v_n)$ engendré par n vecteurs d'un espace vectoriel.

Liste de Questions de cours :

- a) Démontrer la croissance comparée $\ln(x) =_{x \to +\infty} o(x^{\beta})$ si $\beta > 0$.
- b) Démontrer l'unicité du développement limité.
- c) Enoncer et démontrer le résultat sur le produit des développements limités.
- d) Enoncer et démontrer la formule de Taylor-Young.
- e) Calculer $\ln^{(k)}(2)$ pour tout $k \in \mathbb{N}$ à l'aide de la formule de Taylor-Young.
- f) Montrer que les solutions de y'' 3y' + 2y = 0 forme un \mathbb{R} -ev. (2 méthodes)

N.Provost PCSI1 2023-2024