Devoir Surveillé de Mathématiques nº 7 le samedi 23 Mars 2024 - durée 4h

Exercice 1: Soit
$$F_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ tel que } x + y - 2z = 2x - y - z = 0 \right\}$$
 et $F_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ tel que } x + y - z = 0 \right\}$. On définit également $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $u_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

- 1. Montrer que F_1 et F_2 sont des \mathbb{R} -espaces vectoriels.
- 2. Déterminer des bases de F_1 et F_2 à l'aide des vecteurs introduits.
- 3. Montrer que la famille $\mathcal{B}=(u_1,u_2,u_3)$ est une base de \mathbb{R}^3 . Que peut-on en déduire sur les espaces F_1 et F_2 ?
- 4. Déterminer les coordonnées de la base canonique de \mathbb{R}^3 dans la nouvelle base \mathcal{B} .

Exercice 2: Soit
$$E = \mathcal{M}_3(\mathbb{R}), F = \left\{ \begin{pmatrix} a+b & a & a \\ a & a+b & a \\ a & a & a+b \end{pmatrix} \text{ pour } a, b \in \mathbb{R} \right\}$$
 et $G = \left\{ \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} \text{ tel que } x_1 + y_2 + z_3 = x_2 + y_3 + z_1 = 0 \right\}.$

- 1. Montrer que F et G sont des sous- \mathbb{R} -espaces vectoriels de E.
- 2. Montrer que $E = F \oplus G$.
- 3. En déduire les dimensions $\dim_{\mathbb{R}} F$ et $\dim_{\mathbb{R}} G$.

Exercice 3 : Soit $f: E \to E$ une application \mathbb{K} -linéaire d'un espace vectoriel de dimension finie. Soit $1 \le k \le p$. On introduit $\lambda_1, ..., \lambda_p \in \mathbb{K}$ des scalaires deux à deux distincts.

On note enfin
$$E_k = \text{Ker}(f - \lambda_k i d_E)$$
 et $H_k = \sum_{i=1}^k E_i$ pour $k \in [1, p]$.

- 1. Montrer que E_1 et E_2 sont en somme directe.
- 2. Montrer que H_2 et E_3 sont en somme directe.
- 3. En déduire la dimension de H_3 en fonction de celle de E_1, E_2 et E_3 .
- 4. Montrer que, pour tout $k \in [1, p]$, on a $H_k = \bigoplus_{i=1}^k E_i$.
- 5. En déduire que $\sum_{i=1}^{p} \dim_{\mathbb{R}} E_k \leq \dim_{\mathbb{R}} E$.

N.Provost PCSI1 2023-2024

Problème I : 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3x-y \\ x+2y \\ -2x-y \end{pmatrix}$.

- (a) Montrer que f est une application linéaire.
- (b) Calculer $\operatorname{Ker} f$ le noyau de f.
- (c) Montrer que $\operatorname{Im} f = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 \text{ tel que } 3a + 5b + 7c = 0 \right\}.$
- (d) L'application est-elle surjective ou injective?
- 2. Soit $g: \mathbb{R}^3 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y+z \\ x+3y+3z \end{pmatrix}$.
 - (a) Montrer que g est une application linéaire.
 - (b) Déterminer une base de Kerg.
 - (c) L'application est-elle surjective ou injective?
- 3. (a) Montrer que $\mathbb{R}^3 = \operatorname{Ker} g \oplus \operatorname{Im} f$.
 - (b) Déterminer les correspondances des application $\varphi = g \circ f$ et $\psi = f \circ g$.
 - (c) Montrer que $\operatorname{Ker} \psi = \operatorname{Ker} g$ et $\operatorname{Im} \psi = \operatorname{Im} f$.

Problème II : Soit E l'ensemble des suites réelles qui admettent une limite finie.

- 1. On note également F l'ensemble des suites de limites nulles et G l'ensemble des suites constantes.
 - (a) Montrer que E est un \mathbb{R} -espace vectoriel.
 - (b) Montrer que F et G sont supplémentaires dans E.
 - (c) Montrer que $l: E \to \mathbb{R}, (u_n)_{n \geq 0} \mapsto \lim_{l \to \infty} u_n$ définit bien une application linéaire.
 - (d) Déterminer le noyau et l'image de l.
- 2. Pour toute suite $u = (u_n)_{n \in \mathbb{N}} \in E$, on note T(u) la suite définie par :

$$\forall n \in \mathbb{N}, [T(u)]_n = u_{n+1}.$$

- (a) Montrer que l'application $T: E \to E$ est bien définie et est linéaire.
- (b) Déterminer le noyau de T. S'agit-il d'une application injective?
- (c) Déterminer l'image de T. S'agit-il d'une application surjective?
- 3. Soit $\lambda \in \mathbb{R}$. On dit que λ est une valeur propre de l'endomorphisme T s'il existe un élément $u \in E$ tel que : $u \neq 0$ et $T(u) = \lambda u$.
 - (a) Montrer que λ est une valeur propre de T ssi $\text{Ker}(T \lambda Id_E) \neq \{0_E\}$.
 - (b) On pose ici $\lambda = 1/2$. Déterminer toutes les suites $u \in E$ telles que T(u) = (1/2)u.
 - (c) On pose ici $\lambda = 2$. Déterminer toutes les suites $u \in E$ telles que T(u) = 2u.
 - (d) On revient au cas général.

Montrer que $\lambda \in \mathbb{R}$ est une valeur propre de T ssi $\lambda \in]-1,1].$

N.Provost PCSI1 2023-2024