TD5 : Nombres réels et suites - Corrigé

5.1Inégalités et borne supérieure

Exercice 1

Indication:

On montre tour-à-tour chacune des majoration $a \leq b$ en étudiant le signe de b-a ou de $b^2 - a^2$ si ils sont tous les deux positifs.

Solution : Soient x, y > 0 deux réels.

On a
$$\frac{x+y}{2} - \sqrt{xy} = \frac{1}{2}(\sqrt{x^2} - 2\sqrt{x}\sqrt{y} + \sqrt{y^2}) = \frac{(\sqrt{x} - \sqrt{y})^2}{2} \ge 0$$
, avec égalité ssi $\sqrt{x} = \sqrt{y}$ ssi $x = y$.

On a
$$\sqrt{xy} - \frac{2xy}{x+x} = \frac{2\sqrt{xy}}{x+x} (\frac{x+y}{2} - \sqrt{xy}) \ge 0$$
 avec égalité ssi $x = y$

On a
$$\sqrt{xy} - \frac{2xy}{x+y} = \frac{2\sqrt{xy}}{x+y} (\frac{x+y}{2} - \sqrt{xy}) \ge 0$$
 avec égalité ssi $x = y$.
On a $\frac{x^2+y^2}{2} - (\frac{x+y}{2})^2 = x^2/4 - xy/2 + y^2/4 = \frac{(x-y)^2}{4} \ge 0$ avec égalité ssi $x = y$.

Exercice 2

Indication:

On utilise principalement la définition de la partie entière à savoir l'encadrement suivant :

$$x-1<\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$$

Solution:

a) Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$.

On a
$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$
.

Donc
$$|x| + n \le x + n < |x| + n + 1$$
 avec $|x| + n \in \mathbb{Z}$.

Ainsi, par définition, |x| + n est la partie entière de x + n i.e. |x + n| = |x| + n.

b) Soit $x, y \in \mathbb{R}$.

On a
$$\lfloor x \rfloor + \lfloor y \rfloor \le x + y$$
 car $\lfloor x \rfloor \le x$ et $\lfloor x \rfloor \le y$.

Donc
$$|x| + |y| \le |x + y|$$
 car $t \mapsto |t|$ est croissante.

c) Soit $x, y \in \mathbb{R}$. On note m = |x| et n = |y| leurs parties entières.

Ainsi dans tous les cas, |x| + |y| = m + n.

1er cas Si
$$x \in [m, m + 1/2]$$
 et $y \in [n, n + 1/2]$,

alors
$$|x| + |y| + |x + y| = m + n + (m + n)$$
 car $m + n \le x + y < m + n + 1$.

et
$$|2x| + |2y| = 2m + 2n$$
 car $2m \le 2x < 2m + 1$ et $2n \le 2y < 2n + 1$.

Dans ce cas, il y a égalité.

2eme cas Si
$$x \in [m, m + 1/2]$$
 et $y \in [n + 1/2, n + 1]$,

alors
$$|2x| + |2y| = 2m + (2n+1)$$

et
$$|x+y| \in \{m+n, m+n+1\}$$
 car $m+n+1/2 \le x+y \le m+n+3/2$.

Dans ce cas, il y a inégalité large.

3eme cas Si $x \in [m+1/2, m+1]$ et $y \in [n, n+1/2]$, en échangeant le rôle de x et y, on se ramène au 2eme cas.

<u>4eme cas</u> Si $x \in [m + 1/2, m + 1]$ et $y \in [n + 1/2, n + 1]$,

alors
$$|2x| + |2y| = (2m+1) + (2n+1)$$

et
$$|x+y| = m+n+1$$
 car $m+n+1 \le x+y < m+n+2$.

Dans ce cas, il y a inégalité stricte.

Exercice 3

Indication:

On utilise la caractérisation séquentielle de la borne supérieure $m = \sup A$ sous les deux conditions:

- 1. m est un majorant de A i.e. $\forall a \in A, m \geq a$.
- 2. il existe une suite d'éléments de A proches de m i.e. $\exists a_n \in A \to_{n \to +\infty} m$.

On dispose du résultat analogue sur la borne inférieure.

Solution : Soit $a \in A$, il s'écrit donc $a = \frac{n}{mn+1}$ avec $n, m \in \mathbb{N}^*$.

Donc $a \le \frac{n}{n+1} < 1$ car maximal lorsque m = 1 et $a \ge \frac{1}{m+1} > 0$ car minimal lorsque n = 1. Donc $A \subset]0,1[$ est une partie bornée et non vide. Donc elle admet des bornes supérieure et

On considère la suite $u_n = \frac{n}{n+1} \in A$ et vérifie $u_n \to 1$ donc $1 \le \sup A$. Or 1 est déjà un majorant i.e. $1 \ge \sup A$. Donc $\sup A = 1$.

De même la suite $v_m = \frac{1}{m+1} \in A$ vérifie $v_m \to 0$ donc $0 \ge \inf A$. Et on sait déjà que 0 est un minorant donc inf A = 0.

On décompose $B=B_{pair}\cup B_{impair}$. Pour $b_n=\frac{1}{n}+(-1)^n\in B$. Si $n=2k\geq 2$ est pair, $b_n=\frac{1}{n}+1\in]1,3/2]$ car la suite est décroissante commence à 3/2 et tend vers 1.

Si $n=2k+1\geq 1$ est impair, $b_n=\frac{1}{n}-1\in]-1,0]$ car la suite est décroissante commence à 0 et tend vers -1.

Ainsi sup $B = \sup B_{pair} = 3/2$ et inf $B = \inf B_{impair} = -1$.

Exercice 4

Solution:

- a) Les parties sont non vides. Donc ils existent $a_0 \in A$ et $b_0 \in B$. Ainsi a_0 est un minorant de B et b_0 est un majorant de A. Donc d'après l'Axiome de \mathbb{R} , les bornes sup A et inf B existent et sont finies.
 - On considère une suite $(a_n)_{n>0}$ d'éléments de A qui tend vers sup A et une suite $(b_n)_{n>0}$ d'éléments de B qui tend vers inf B. On sait que pour tout $n \in \mathbb{N}$, $a_n \leq b_n$ donc en passant à la limite, on trouve sup $A = \lim a_n \le \lim b_n = \inf B$.
- b) (\Leftarrow) On suppose $\sup A = \inf B$. Soit $\varepsilon > 0$. On sait que $\sup A \varepsilon/2$ n'est pas un majorant. Donc il existe $x \in A$ tel que $x \ge \sup A - \varepsilon/2$. De même inf $B + \varepsilon/2$ n'est pas un minorant. Donc il existe $y \in B$ tel que $x \le \inf B + \varepsilon/2$. Donc $|x-y| \le (\inf B + \varepsilon/2) - (\sup A - \varepsilon/2) = \varepsilon$. (⇒) On suppose par contraposée sup $A < \inf B$. On pose $\varepsilon = (\inf B - \sup A) > 0$. Soit $x \in A$ et $y \in B$. On a $x \leq \sup A \leq \inf B \leq y$ donc $\varepsilon \leq \inf B - \sup A \leq y - x$. Ce qui donne $|x-y|\geq \varepsilon$.

Exercice 5

Indication:

On justifie que I et J sont des intervalles. Puis on calcul leurs bornes supérieures et inférieures.

Solution:

Les unions et intersections de convexe sont encore des convexes. Donc les ensembles I et Jsont des convexes de $\mathbb R$ càd des intervalles.

On a inf $I = 0 \in I$ et sup $I = \lim_{\infty} (1 - 1/n) = 1 \notin I$. Donc I = [0, 1].

ET inf $J = \lim_{\infty} -1/n = 0 \in J$ et sup $J = \lim_{\infty} 1/n = 0 \in J$. Donc $J = [0, 0] = \{0\}$ est un singleton.

5.2Suites réelles explicites et récurrences linéaires

Exercice 6

Solution:

a) On a $\frac{2n^2+1}{n^2+3n+1} \sim_{+\infty} \frac{2n^2}{n^2} \to 2$.

Ainsi la suite est convergente donc en particulier elle est bornée.

b) On note $u_n = \frac{1}{n} + (-1)^n$. On a $u_{2k} = \frac{1}{2k} + 1$ tend vers 1 et la sous-suite est bornée. On a $u_{2k+1} = \frac{1}{2k+1} - 1$ tend vers -1 et la sous-suite est bornée.

Les deux sous-suites sont bornées donc la suite totale aussi. Par contre la suite n'admet pas de limite car il y a deux valeurs d'adhérence différentes.

c) On a $\sqrt{n} + (-1)^n \ge \sqrt{n} - 1 \to +\infty$. Donc par encadrement la suite tend vers $+\infty$. En particulier, elle est minorée mais pas majorée.

- d) On a $n^4 + \cos n > n^4 1 \to +\infty$. Et de même elle tend vers $+\infty$, est minorée mais pas majorée.
- e) On note $u_n = \frac{n^2(1+(-1)^n)}{n^3+1}$. On a $0 \le 1+(-1)^n \le 2$.

Donc
$$0 \le u_n \le \frac{2n^2}{n^3 + 1} \sim \frac{2n^2}{n^3} = \frac{2}{n} \to 0.$$

Ainsi u_n tend vers 0 par encadrement.

On a
$$v_{2k} = \frac{2k + (2k)^2}{(2k)^2 + (2k) + 1} \sim \frac{(2k)^2}{(2k)^2} \to 1$$

f) On note
$$v_n = \frac{n + (-1)^n n^2}{n^2 + n + 1}$$
.
On a $v_{2k} = \frac{2k + (2k)^2}{(2k)^2 + (2k) + 1} \sim \frac{(2k)^2}{(2k)^2} \to 1$.
Et $v_{2k+1} = \frac{2k + 1 - (2k+1)^2}{(2k+1)^2 + (2k+1) + 1} \sim \frac{-(2k+1)^2}{(2k+1)^2} \to -1$.
Donc la suite v_n diverge car elle a deux valeurs d'adhérence différentes.

g) On note $w_n = \frac{a^n - b^n}{a^n + b^n}$. On réalise une disjonction.

Si
$$a > b$$
 alors $w_n \sim_{+\infty} \frac{a^n}{a^n} \to 1$

Si
$$a > b$$
 alors $w_n \sim_{+\infty} \frac{a^n}{a^n} \to 1$.
Si $a < b$ alors $w_n \sim_{+\infty} \frac{-b^n}{b^n} \to -1$.

Si
$$a = b$$
 alors $w_n = 0 \to 0$.

Si
$$a = b$$
 alors $w_n = 0 \to 0$.
h) On a $\frac{1+3+\ldots+(2n-1)}{1+2+\ldots+n} = \frac{\sum_{k=1}^{n}(2k-1)}{\sum_{k=1}^{n}k} = \frac{n(n+1)-n}{n(n+1)/2} = \frac{2(n-1)}{n+1} \sim \frac{2n}{n} \to 2$.
i) On a $n^2 \times \frac{1+2+\ldots+n}{1+8+\ldots+n^3} = \frac{n^2n(n+1)/2}{n^2(n+1)^2/4} = \frac{2n}{n+1} \sim \frac{2n}{n} \to 2$

i) On a
$$n^2 \times \frac{1+2+...+n}{1+8+...+n^3} = \frac{n^2n(n+1)/2}{n^2(n+1)^2/4} = \frac{2n}{n+1} \sim \frac{2n}{n} \to 2$$

Exercice 7

Indication:

On utilise la méthode pour les SRL2 (analogue au EDL2):

- 1. On détermine les racines du polynômes caractéristique $\chi(X) = X^2 + a_1X + a_0$.
- 2. On trouve les coefficients λ_1, λ_2 dans l'expression du type $u_n = \lambda_1 q_1^n + \lambda_2 q_2^n$ à l'aide des conditions initiales.

Solution:

a) Le polynôme caractéristique est $X^2 - 6X + 8 = (X - 4)(X - 2)$.

Donc pour tout
$$n \in \mathbb{N}$$
, $a_n = \lambda_1 4^n + \lambda_2 2^n$.

Les valeurs
$$a_0 = 1$$
 et $a_1 = -2$ donne le système
$$\begin{cases} \lambda_1 + \lambda_2 &= 1\\ 4\lambda_1 + 2\lambda_2 &= -2 \end{cases}$$

On obtient
$$\lambda_1 = 1$$
 et $\lambda_2 = -3$.

Donc pour tout
$$n \in \mathbb{N}$$
, $a_n = 4^n - 3 \times 2^n$.

b) Le polynôme caractéristique est $X^2 + \frac{1}{2}X - \frac{1}{2} = (X+1)(X-\frac{1}{2})$. Donc pour tout $n \in \mathbb{N}$, $a_n = \lambda_1(-1)^n + \lambda_2\left(\frac{1}{2}\right)^n$.

Donc pour tout
$$n \in \mathbb{N}$$
, $a_n = \lambda_1 (-1)^n + \lambda_2 \left(\frac{1}{2}\right)^n$.

Les valeurs
$$b_0 = 3$$
 et $b_1 = 0$ donne le système
$$\begin{cases} \lambda_1 + \lambda_2 &= 3 \\ -\lambda_1 + \frac{1}{2}\lambda_2 &= 0 \end{cases}$$

On obtient
$$\lambda_1 = 1$$
 et $\lambda_2 = 2$.

Donc pour tout
$$n \in \mathbb{N}$$
, $b_n = 2 \times (1/2)^n + (-1)^n$.

c) Le polynôme caractéristique est $X^2 - X + \frac{1}{2} = (X - (1/2))^2 + (1/2)^2$.

Les racines sont
$$\frac{1}{2} \pm i\frac{1}{2} = \frac{\sqrt{2}}{2}e^{\pm i\pi/4}$$

Donc pour tout
$$n \in \mathbb{N}$$
, $c_n = \left(\frac{\sqrt{2}}{2}\right)^n (\lambda_1 \cos(n\pi/4) + \lambda_2 \sin(n\pi/4)).$

Les valeurs
$$c_0 = 1$$
 et $c_1 = \frac{1}{2}$ donne le système
$$\begin{cases} \lambda_1 &= 1\\ \frac{1}{2}\lambda_1 + \frac{1}{2}\lambda_2 &= \frac{1}{2} \end{cases}$$

On obtient
$$\lambda_1 = 1$$
 et $\lambda_2 = 0$.

Donc pour tout
$$n \in \mathbb{N}$$
, $c_n = (\sqrt{2}/2)^n \cos(n\pi/4)$.

d) Le polynôme caractéristique est $X^2 - 6X + 9 = (X - 3)^2$. Donc pour tout $n \in \mathbb{N}, d_n = 3^n(\lambda_1 + n\lambda_2).$

Les valeurs
$$d_0 = 0$$
 et $d_1 = 3$ donne le système
$$\begin{cases} \lambda_1 &= 0 \\ 3(\lambda_1 + \lambda_2) &= 3 \end{cases}$$

On obtient
$$\lambda_1 = 0$$
 et $\lambda_2 = 1$.

Donc pour tout
$$n \in \mathbb{N}, d_n = n3^n$$
.

Exercice 8

Indication:

Etudier la suite $v_n = \ln(u_n)$ après avoir justifier son existence.

Solution:

Par récurrence immédiate, on a $\forall n \in \mathbb{N}, u_n > 0$.

On peut donc étudier la suite $v_n = \ln u_n$ définie par $v_0, v_1 \in \mathbb{R}$ et la relation de récurrence : $v_{n+2} = \ln u_{n+2} = \ln \sqrt{u_n u_{n+1}} = \frac{1}{2} \ln u_n + \frac{1}{2} \ln u_{n+1} = \frac{1}{2} v_{n+1} + \frac{1}{2} v_n$.

La suite $(v_n)_{n\geq 0}$ est une suite récurrente linéaire d'ordre 2. Son polynôme caractéristique est $\chi(X)=X^2-X/2-1/2=(X-1)(X+1/2)$.

Donc
$$v_n = \lambda_1 1^n + \lambda_2 (-1/2)^n$$
 avec $\lambda_1, \lambda_2 \in \mathbb{R}$.

Puis
$$v_0 = \lambda_1 + \lambda_2$$
 et $v_1 = \lambda_1 - \frac{\lambda_2}{2}$.

Donc
$$\lambda_1 = (v_0 + 2v_1)/3 = \ln \sqrt[3]{u_0 u_1^2}$$
 et $\lambda_2 = 2/3(v_0 - v_1) = \ln \sqrt[3]{u_0^2/u_1^2}$

Puis
$$u_n = \exp v_n = \exp \lambda_1 \cdot \exp(\lambda_2 (-1/2)^n) = \sqrt[3]{u_0 u_1^2} (u_0/u_1)^{2/3(-1/2)^n}$$

Donc la suite u_n tend vers $\sqrt[3]{u_0u_1^2}$.

Exercice 9

Indication:

Etudier la suite $v_n = u_n^2$

Solution:

Soit
$$n \in \mathbb{N}$$
. On a $u_{n+1}^2 = u_n^2 + \frac{1}{2^n}$.

Donc
$$u_n^2 - u_0^2 = \sum_{k=0}^{n-1} u_{k+1}^2 - u_k^2 = \sum_{k=0}^{n-1} \frac{1}{2^k} = \frac{1 - (1/2)^n}{1 - (1/2)} = 2(1 - 2^{-n}) \to_{+\infty} 2$$

Ainsi $u_n = \sqrt{(u_n^2 - u_0^2) + u_0^2} \to \sqrt{2 + u_0^2} = \sqrt{2}$.

5.3 Suites récurrentes non linéaires

Indication pour les exercices 10, 11 et 12:

Pour étudier les suites du type $u_{n+1} = f(u_n)$, on applique la méthode suivante :

- 1. On recherche les points fixes en résolvant f(x) = x.
- 2. On étudie les variation de f. Si f est croissante alors (u_n) est monotone et contenue dans un intervalle stable I. Si $u_0 \in I$ et $f(I) \subset I$ alors $\forall n \in \mathbb{N}, u_n \in I$.
- 3. On étudie le signe de g(x) = f(x) x. Si $g \ge 0$ sur I alors (u_n) est croissante, si $g \le 0$ alors (u_n) est décroissante.
- 4. On conclut à l'aide du théorème de la limite monotone.

Exercice 10

Solution:

La fonction $f(x) = \sqrt{2+x}$ est croissante. On a $u_1 = f(u_0) = \sqrt{5} < 3 = u_0$.

Donc par récurrence, on peut démontrer que $\forall n \in \mathbb{N}, u_n \geq u_{n+1}$.

Init. On a démontrer $u_0 > u_1$.

Hér. Soit $n \in \mathbb{N}$. On suppose $u_n \geq u_{n+1}$ alors $u_{n+1} = f(u_n) \geq f(u_{n+1}) = u_{n+2}$ car f est croissante.

Concl. La suite $(u_n)_{n\geq 0}$ est décroissante.

La fonction f est à valeurs positives (car fct racine). Donc pour tout $n \in \mathbb{N}$, $u_n \geq 0$. La suite est décroissante et minorée. Donc elle converge vers $l \geq 0$ un point fixe de la fonction.

Puis on résout f(l) = l i.e. $\sqrt{2+l} = l$ donc $l^2 - l - 2 = 0$ ainsi $l \in \{2, -1\}$. Or l positif, donc l = 2.

Exercice 11

Solution:

On pose $f(x) = \sqrt{x^2 + x + 1}$. Un point fixe $l \in \mathbb{R}$ vérifie f(l) = l donc $l^2 = l^2 + l + 1$ puis l=-1. Mais f(-1)=1 n'est pas un point fixe. Ainsi f n'admet aucun point fixe et la suite

La fonction f est croissante et $u_1 = \sqrt{3} > 1 = u_0$. Ainsi par récurrence $(u_n)_{n>0}$ est croissante. Si la suite serait majorée alors elle tendrait vers une limite finie. Ceci est absurde. Donc la suite est non majorée et on a $u_n \to +\infty$.

Exercice 12

Solution:

On montre par récurrence que $\forall n \in \mathbb{N}, u_n \in [0,2]$. En effet si $0 \le u_n \le 2$ avec n pair alors $2 \le 2 + u_n \le 4$ et alors $u_{n+1} \in [\sqrt{2}, 2] \subset [0, 2]$. Si $0 \le u_n \le 2$ avec n impair alors $0 \le 2 - u_n \le 2$ et alors $u_{n+1} \in [0, \sqrt{2}] \subset [0, 2]$. Donc la suite est bornée.

Si la suite converge vers $l \in [0,2]$ alors on a $l = \sqrt{2+l}$ et $l = \sqrt{2-l}$ car $u_{2k+1} = \sqrt{2+u_{2k}}$ et $u_{2k+2} = \sqrt{2-u_{2k+1}}$. On résout les équations en l=2 et $2=\sqrt{2-2}=0$ ce qui est absurde. Donc la suite diverge sans limite.

<u>Indication</u> pour les exercices 13 et 14 :

On recherche à utiliser le théorème des suites adjacentes.

- 1. a_n est croissante.
- 2. b_n est décroissante
- 3. $b_n a_n \to 0$ (ou on peut aussi faire $b_n a_n \ge 0$ pour une version partielle)

Exercice 13

Solution:

Soit $n \in \mathbb{N}$. On a $b_{n+1} - a_{n+1} = \frac{(\sqrt{b_n} - \sqrt{a_n})^2}{2} \ge 0$. Ainsi pour tout $n \ge 0, 0 \le a_n \le b_n$.

Puis $b_{n+1} - b_n = \frac{a_n - b_n}{2} \ge 0$ et la suite est décroissante.

Et $a_{n+1} - a_n = \sqrt{a_n}(\sqrt{b_n} - \sqrt{a_n}) \le 0$ et la suite est croissante.

Donc les suites sont convergentes d'après le thm de la limite monotone.

On note $a_n \to l_a$ et $b_n \to l_b$ les limites finies des suites.

La relation $b_{n+1} = \frac{a_n + b_n}{2}$ montre que $l_b = \frac{l_a + l_b}{2}$ donc $l_a = l_b$.

Ainsi les suites converge vers la même limite.

Exercice 14

Solution:

a) On montre par récurrence que $\forall n \in \mathbb{N}, a_n > 0$ et $b_n > 0$.

Init. n = 0 On a $a_0 = 1 > 0$ et $b_0 = 2 > 0$.

Hér. Soit $n \in \mathbb{N}$ tel que $a_n > 0$ et $b_n > 0$. Alors $a_{n+1} = \frac{2a_n b_n}{a_n + b_n} > 0$ et $b_{n+1} = \frac{a_n + b_n}{2} > 0$.

b) On montre par récurrence que $\forall n \in \mathbb{N}, a_n, b_n \in \mathbb{Q}$.

Init. n = 0 On a $a_n = 1 \in \mathbb{Z} \subset \mathbb{Q}$ et $b_0 = 2 \in \mathbb{Z} \subset \mathbb{Q}$

Hér. Soit $n \in \mathbb{N}$ tel que $a_n, b_n \in \mathbb{Q}$. Donc $a_n = A/B$ et $b_n = C/D$ avec $A, B, C, D \in \mathbb{N}^*$. Puis $a_{n+1} = \frac{2a_nb_n}{a_n+b_n} = \frac{2AC}{AD+CB} \in \mathbb{Q}$ et $b_n = \frac{a_n+b_n}{2} = \frac{AD+CB}{2BD} \in \mathbb{Q}$.

- c) Pour $n \in \mathbb{N}$, on a $a_{n+1}b_{n+1} = \frac{2a_nb_n}{a_n+b_n} \frac{a_n+b_n}{2} = a_nb_n$. Donc la suite produit a_nb_n est constante.
- d) Pour $n \in \mathbb{N}$, on a $b_{n+1} a_{n+1} = \frac{a_n + b_n}{2} \frac{2a_n b_n}{a_n + b_n} = \frac{(a_n + b_n)^2 4a_n b_n}{2(a_n + b_n)} = \frac{(a_n b_n)^2}{2(a_n + b_n)} > 0$. e) On a $a_{n+1} a_n = \frac{2a_n b_n}{a_n + b_n} a_n = \frac{a_n}{a_n + b_n} (2b_n (a_n + b_n)) = \frac{a_n}{a_n + b_n} (b_n a_n) > 0$. Donc la suite $(a_n)_{n \ge 0}$ est croissante.

On a $b_{n+1} - b_n = \frac{a_n + b_n}{2} - b_n = \frac{a_n - b_n}{2} < 0$. Donc la suite est décroissante.

D'après le thm de limite monotone, on a $a_n \to l_a$ et $b_n \to l_b$. Puis dans la relation $b_{n+1} =$ $\frac{a_n+b_n}{2}$, on obtient $l_b=\frac{l_a+l_b}{2}$ donc $l_a=l_b$.

De plus $2 = u_0 v_0 = u_n v_n \rightarrow l_a l_b = (l_a)^2$. Donc $l_a = \sqrt{2}$ car les suites sont positives.

Ainsi $(a_n)_{n>0}$ et $(b_n)_{n>0}$ sont des suites de rationnelles qui tendent vers $\sqrt{2}$ un irrationnel.

Exercice 15

Solution:

Init. n=2 On a $u_0=0$ puis $u_1=\sqrt{0+1}=1$ et $u_2=\sqrt{1+1/2}=\sqrt{6}/2$. Et l'équation $x^2 - x - 1/4 = 0$ avec $\Delta = 2$ admet $\alpha_2 = \frac{1+\sqrt{2}}{2} > 0$ comme unique solution positive.

On a $(2\alpha_2)^2 = 3 + 2\sqrt{2} < 6 = (2u_2)^2 \operatorname{car} \sqrt{2} < 3/2$. Donc $\alpha_2 < u_2$.

Hérédité. Soit $n \geq 2$ tel que $\alpha_n < u_n$.

On en déduit que $\alpha_n^2 = \alpha_n + 1/2^n < \underline{u_n + 1/2^n} = u_{n+1}^2$. Donc $\alpha_n < u_{n+1}$.

Mais la suite est explicite $\alpha_n = \frac{1+\sqrt{1+2^{2-n}}}{2}$. Elle est décroissante donc $\alpha_{n+1} < \alpha_n < u_{n+1}$ cqfd.

Soit $n \ge 2$. On a $u_n > 0$ et $u_{n+1}^2 - u_n^2 = u_n + 1/2^n - u_n^2 = -f_n(u_n)$ avec $f_n(x) = x^2 - x - 1/2^n$. On connaît le signe de f_n en fonction de sa racine α_n . Or $u_n > \alpha_n$ donc $f_n(u_n) > 0$. Puis $u_{n+1}^2 - u_n^2 < 0$ donc $0 < u_{n+1} < u_n$ est décroissante et positive.

D'après le thm de la limite monotone, la suite converge vers une limite finie $u_2 > l \ge 0$. En passant à la limite dans la relation de récurrence, on trouve $l = \sqrt{l}$ donc $l \in \{0, 1\}$.

Or
$$\alpha_n = \frac{1+\sqrt{1+2^{2-n}}}{2} \to 1$$
 et $u_n > \alpha_n$ donc $l \ge 1$. Ainsi $u_n \to 1$.

5.4 Problème classique

Exercice 16

Solution:

- a) Soit $n \in \mathbb{N}$. On a $\sin(n+1) = \sin(n)\cos(1) + \cos(n)\sin(1)$. Donc $\cos(n) = \frac{\sin(n+1) \cos(1)\sin(n)}{\sin(1)}$ car $\sin(1) \neq 0$. Ainsi la suite converge en tant que combinaison linéaire de $\sin(n) \rightarrow l$ et $\sin(n+1) \to l$. La limite est bien $l' = \frac{l - \cos(1)l}{\sin(1)} = l \times \frac{1 - \cos 1}{\sin 1}$.
- **b)** Soit $n \in \mathbb{N}$.

On a $\sin(2n) \to l$ en tant que suite extraite.

Et $\sin(2n) = 2\sin(n)\cos(n) \to 2ll'$ en tant que produit.

De même $\cos(2n) \to l'$ comme suite extraite.

Et $cos(2n) = 2cos^2(n) - 1 \rightarrow 2l' - 1$ par opérations.

c) Par unicité de la limite on obtient donc l = 2ll' et l' = 2l' - 1. La deuxième équation se résout en l'=1 puis la première est alors l=2l d'où l=0. Ceci est absurde car, dans la question a), on obtient $1 = l' = l \times \frac{1-\cos 1}{\sin 1} = 0$. Donc la suite $(\sin(n))_{n>0}$ diverge sans limite.

Exercice 17

Solution:

- a) Soit p > 1 un entier et $x \in [p, p+1]$ un réel. On a p < x < p+1 donc $\frac{1}{p+1} < \frac{1}{x} < \frac{1}{p}$. Donc $\int_p^{p+1} \frac{1}{p+1} \, \mathrm{d}x < \int_p^{p+1} \frac{\mathrm{d}x}{x} < \int_p^{p+1} \frac{1}{p} \, \mathrm{d}x$ cà
d $\frac{1}{p+1} < \int_p^{p+1} \frac{\mathrm{d}x}{x} < \frac{1}{p}$. Puis en remplaçant p par p-1 dans l'inégalité de gauche, on trouve $\frac{1}{p} < \int_{p-1}^p \frac{\mathrm{d}x}{x}$ et on en
- déduit l'encadrement : $\int_{p}^{p+1} \frac{dx}{x} \le \frac{1}{p} \le \int_{p-1}^{p} \frac{dx}{x}$ **b)** On a $S_n = \sum_{k=1}^{n} \frac{1}{n+k} < \sum_{k=1}^{n} \int_{n+k-1}^{n+k} \frac{dx}{x} = \int_{n}^{2n} \frac{dx}{x} = \ln(2n) \ln n = \ln 2.$ Et de même $S_n = \sum_{k=1}^{n} \frac{1}{n+k} > \sum_{k=1}^{n} \int_{n+k}^{n+k+1} \frac{dx}{x} = \int_{n+1}^{2n+1} \frac{dx}{x} = \ln(2n+1) \ln(n+1) = \frac{1}{n+k} = \frac{1}{n+k}$ $\ln\left(\frac{2n+1}{n+1}\right) \to_{+\infty} \ln 2.$

Donc par théorème d'encadrement, $S_n \to_{+\infty} \ln 2$.

c) On montre le résultat par récurrence sur $n \in \mathbb{N}^*$.

Init. Pour n = 1, on a $T_2 = 1 - 1/2 = 1/2$ et $S_1 = 1/(1+1) = 1/2$.

Hér. Soit $n \in \mathbb{N}^*$ tel que $T_{2n} = S_n$. On a $S_{n+1} - S_n = \sum_{k=1}^{n+1} \frac{1}{n+1+k} - \sum_{k=1}^{n} \frac{1}{n+k} = \sum_{l=n+2}^{2n+2} \frac{1}{l} - \sum_{l=n+1}^{2n} \frac{1}{l} = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{(2n+2)+(2n+1)-2(2n+1)}{(2n+1)(2n+2)} = \frac{1}{(2n+1)(2n+2)}$. D'autre part, $T_{2n+2} - T_{2n} = \sum_{k=1}^{2n+2} \frac{(-1)^{k-1}}{k} - \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \frac{1}{2n+1} - \frac{1}{2n+2} = \frac{1}{(2n+1)(2n+2)}$

Ainsi $S_{n+1} - S_n = T_{2n+2} - T_{2n}$ avec $S_n = T_{2n}$ par HR donc $S_{n+1} = T_{2n+2}$. Concl. pour tout $n \ge 1$, $T_{2n} = S_n$ et T_{2n} tend vers $\ln 2$. Or $T_{2n+1} = T_{2n} + \frac{1}{2n+1} \to \ln 2 + 0$ par opération. Donc la suite totale tend bien vers $\ln 2$.

Exercice 18

Solution:

- a) Pour $n \geq 1$, on a $\sqrt{n+1} \sqrt{n} = \frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}} \leq \frac{1}{2\sqrt{n}}$ car $\sqrt{n+1} \geq \sqrt{n}$. Ainsi $\frac{1}{\sqrt{n}} \geq 2(\sqrt{n+1}-\sqrt{n})$ Ainsi $u_n = \sum_{j=1}^n \frac{1}{\sqrt{j}} \geq \sum_{j=1}^n 2(\sqrt{j+1}-\sqrt{j}) = 2(\sqrt{n+1}-1)$ par télescopage. Puis $2\sqrt{n+1}-2 \to +\infty$. Donc par théorème de comparaison, $u_n \to +\infty$.
- b) On a déjà établie que $u_n > 2\sqrt{n+1} 2$. De manière analogue, on a $\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n}+\sqrt{n+1}} > \frac{1}{2\sqrt{n+1}}$. Puis $u_n = \sum_{j=1}^n \frac{1}{\sqrt{j}} = \sum_{j=0}^{n-1} \frac{1}{\sqrt{j+1}} < 2\sum_{j=0}^{n-1} \sqrt{j+1} - \sqrt{j} = 2\sqrt{n}$. Puis on en déduit $\frac{2\sqrt{n+1}-2}{\sqrt{n}} < \frac{u_n}{\sqrt{n}} < 2$, avec $\frac{2\sqrt{n+1}-2}{\sqrt{n}} \sim_{+\infty} \frac{2\sqrt{n}}{\sqrt{n}} \to 2$. Donc par théorème d'encadrement, $u_n/\sqrt{n} \to 2$.
- c) On note $v_n=u_n-2\sqrt{n}$. On a $v_{n+1}-v_n=u_{n+1}-u_n-2\sqrt{n+1}+2\sqrt{n}$ $\frac{1}{\sqrt{n+1}}-2(\sqrt{n+1}-\sqrt{n})\leq 0$. Donc v_n est décroissante. Puis $v_n=u_n-2\sqrt{n}>2\sqrt{n+1}-2-2\sqrt{n}>-2$. Donc v_n est minorée. Ainsi d'après le théorème de la limite monotone, la suite v_n converge.

Exercice 19

Solution:

- a) Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que $\forall n \geq N_1, |u_n| < \varepsilon/2$. Puis pour $n \geq N_1, |v_n| \leq \frac{1}{n} \sum_{k=1}^n |u_k| \leq \frac{1}{n} (\sum_{k=1}^{N_1} u_k) + \frac{1}{n} \sum_{k=N_1+1}^n \varepsilon/2 \leq a_n + \frac{n-N_1}{n} \varepsilon/2$. avec $a_n = \frac{1}{n} \sum_{k=1}^{N_1} u_k \to_{n \to 0} 0$. Donc il existe $N_2 \in \mathbb{N}$ tel que $\forall n \geq N_2, a_n \leq \varepsilon/2$. Ainsi pour $n \geq \max(N_1, N_2), |v_n| \leq a_n + \frac{n-N_1}{n} \varepsilon/2 \leq \varepsilon/2 + \varepsilon/2 = \varepsilon$. C'est à dire la définition de $v_n \to 0$.
- **b)** On note $u_n = a_n + \lambda$ avec $a_n \to 0$. Donc $v_n = \frac{1}{n} \sum_{k=1}^n u_k = \frac{1}{n} \sum_{k=1}^n (a_k + \lambda) = (\frac{1}{n} \sum_{k=1}^n a_k) + \lambda \to \lambda$ car d'après la question précédente $\frac{1}{n} \sum_{k=1}^n a_k \to 0$.
- c) Soit $M \in \mathbb{R}$. On sait qu'il existe un rang $N \in \mathbb{N}$ tel que $\forall n \geq N, u_n \geq M'$ avec $M' \in \mathbb{R}$ à déterminer.

determiner. Donc
$$v_n \geq \frac{1}{n} \sum_{k=1}^N u_k + \frac{n-N}{n} M'$$
. On a $\frac{1}{n} \sum_{k=1}^N u_k \to 0$ donc $\frac{1}{n} \sum_{k=1}^N u_k \geq -1$ APCR. Et $\frac{n-N}{n} \to 1$ donc $\frac{n-N}{n} \geq 1/2$ APCR. Ainsi APCR $v_n \geq -1 + M'/2 = M$ en posant $M' = 2M + 1$.