TD6: Limite et continuité

Continuité des fonctions explicites 6.1

Exercice 1 (*) Démontrer grâce à la définition (avec les ε) la continuité de f en a pour :

$$f(x) = x^2$$
 et $a = 1$, $f(x) = \frac{1}{x}$ et $a = 3$, $f(x) = \sqrt{x}$ et $a = 2$.

Exercice 2 (*)

- a) Etudier la continuité de la partie fractionnaire : $F: \mathbb{R} \to [0, 1], x \mapsto x |x|$.
- **b)** Etudier la continuité de $f: x \mapsto x |1/x| \text{ sur } \mathbb{R}^*$.
- c) Montrer que f se prolonge par continuité en x=0.

Exercice 3 (*) Montrer que $f(x) = \sin(1/x)$ n'admet pas de limite en 0.

Montrer que la fonction $q(x) = x \sin(1/x)$ définie sur \mathbb{R}^* se prolonge par continuité en 0.

Exercice 4 (*) Déterminer si l'on peut prolonger par continuité aux bords de leurs ensembles de définition les fonctions suivantes :

$$f(x) = x \left| 1 + \frac{1}{x} \right|$$
 et $g(x) = \frac{x^2 + |x|}{x^2 - |x|}$.

6.2 Continuité sur des fonctions abstraites

Exercice 5 (\star) Soit f une fonction continue sur \mathbb{R} vérifiant :

 $\forall x, y \in \mathbb{R}, f(x+y) + f(x-y) = 2[f(x) + f(y)].$

- a) Calculer f(0). Etudier la parité de f.
- **b)** Montrer que $f(nx) = n^2 f(x)$ pour tout entier n et réel x.
- c) Montrer que $f(rx) = r^2 f(x)$ pour tout rationnel r et réel x.
- d) En déduire que $f(x) = x^2 f(1)$ pour tout $x \in \mathbb{R}$.

Exercice 6 (**) On suppose que $f: \mathbb{R} \to \mathbb{R}$ est périodique de période $T \in \mathbb{R}_+^*$.

- a) Montrer que si f admet une limite finie en $+\infty$ alors f est constante.
- b) Montrer que si f est continue sur [0,T] alors f est bornée sur \mathbb{R} .
- c) Montrer que si f est continue et admet 1 et $\sqrt{2}$ pour périodes alors f est constante.

Exercice 7 (**) Soit f une fonction définie sur [0,1].

- a) Montrer que si f est continue et injective sur [0,1] alors f est strictement monotone.
- b) Montrer que si f est monotone et que $[f(0), f(1)] \subset f([0, 1])$ alors f est continue sur [0, 1].

Utilisation des théorèmes sur la continuité

Exercice 8 (\star) Soit f une fonction continue sur \mathbb{R} .

- a) On suppose que $\forall x \in \mathbb{R}, f(x)^2 = 1$. Montrer que f est constante.
- **b)** On suppose que $\forall x \in \mathbb{R}$, $f(x)^2 = 1 + x^2$. Déterminer f.
- c) On suppose que $\forall x \in \mathbb{R}, f(x)^2 = x^2$. Déterminer f.

Exercice 9 $(\star\star)$ Soit $f:\mathbb{R}_+\to\mathbb{R}$ une fonction croissante telle que l'application $g:\mathbb{R}_+^*\to\mathbb{R}$ et définie par $g(x) = \frac{f(x)}{x}$ soit décroissante. Montrer que g est continue sur \mathbb{R}_+^* . **Exercice 10** (\star) Soit f et g des fonctions continues sur [a,b].

- a) On suppose ici que pour tout $x \in [a, b], f(x) < g(x)$. Montrer l'existence d'un réel m > 0 tel que $\forall x \in [a, b], f(x) + m \leq g(x)$.
- **b)** On suppose désormais que pour tout $x \in [a, b], 0 < f(x) < g(x)$. Montrer l'existence d'un réel M > 1 tel que $\forall x \in [a, b], Mf(x) \leq g(x)$.

Exercice 11 $(\star\star)$ Soit f une fonction continue et bornée sur \mathbb{R} .

Montrer que f admet un point fixe.

Exercice 12 $(\star\star)$ Soit f et g deux fonctions continues sur I=[a,b] tels que $\sup_I f=\sup_I g$. Montrer qu'il existe $c \in I$ tel que f(c) = g(c).