TD 11: Analyse asymptotique

11.1 Recherche d'équivalent

Exercice 1 (\star) Donner un équivalent simple de suites suivantes :

a)
$$n^4 + 3n^2 - 5$$

b)
$$3^n - n^3 + 10$$

c)
$$\ln^n(n) + 3^n - n^9$$

d)
$$\frac{3^n+2^nn^2}{\ln^2(n)-n^2}$$
.

e)
$$\ln(1+n)\ln(1+\frac{1}{n})$$

f)
$$\frac{\sqrt{4n+1}-2\sqrt{n}}{\sqrt{(n+1)^3}-n\sqrt{n}}$$

g)
$$\frac{1+a^n+n^{\alpha}}{\ln^{\beta}n+n^{\alpha}}$$
 suivant $\alpha,\beta,a\in\mathbb{R}_+^*$.

h)
$$\sqrt{n^4 + 3n} - n^2$$

i)
$$1 - e^{2\ln\left(1 + \frac{1}{n}\right)}$$

$$(n + \frac{1}{n^5}) - \ln n$$

k)
$$\sin\left(1-\cos\frac{1}{n}\right)$$

$$1) \ln(\cos\frac{1}{n}) + \cos(\tan\frac{2}{n}) - 1$$

m)
$$\sin \ln \left(1 + \frac{1}{2n^2}\right)$$

Exercice 2 (*) Soient u et v des suites réelles de limites nulles. Montrer que $e^{u_n} - e^{v_n} \sim u_n - v_n$.

11.2 Recherche d'équivalent de suite autonome

Lemme de Cesàro:

Si la suite $u_n \to l$ alors la suite $\frac{1}{n} \sum_{k=1}^n u_k \to l$.

Exercice 3 (**) Soit $(u_n)_{n\geq 0}$ la suite réelle définie par $0 < u_0 < 1$ et par la relation $u_{n+1} = \frac{1+u_n^2}{2}$.

- a) Montrer que la suite converge vers une limite l que l'on précisera.
- b) Montrer que la suite $\left(\frac{1}{u_{n+1}-l} \frac{1}{u_n-l}\right)_{n\geq 0}$ converge et préciser sa limite.
- c) En utilisant le lemme de Cesàro, déterminer un équivalent de $(u_n l)$.

Exercice 4 (**) Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0>0$ et par la relation $u_{n+1}=u_n+\frac{1}{u_n}$.

- a) Montrer que pour tout $n \ge 1, u_n \ge 1$
- **b)** Montrer que u_n est croissante.
- c) Montrer que la suite u_n tend vers $+\infty$.
- d) Montrer que $u_{n+1}^2 u_n^2 \sim 2$.
- e) En utilisant le lemme de Cesàro, en déduire que $u_n \sim \sqrt{2n}$.

Exercice 5 $(\star\star)$ Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0>0$ et par la relation $u_{n+1}=u_n+\exp(-u_n)$.

- a) Montrer que u_n croit vers $+\infty$.
- **b)** Déterminer la limite de $e^{u_{n+1}} e^{u_n}$.
- c) En utilisant le lemme de Cesàro, en déduire un équivalent simple de u_n .

Exercice 6 (**) On définit une suite (u_n) par $u_0 \in]0, \pi[$ et la relation $u_{n+1} = \sin u_n$.

- a) Montrer que $\lim u_n = 0$.
- **b)** Donner un équivalent simple de $u_{n+1} u_n$.
- c) Calculer la limite de $v_n = \frac{1}{u_n^2} \frac{1}{u_{n+1}^2}$.
- d) En utilisant le théorème de Cesàro, en déduire un équivalent simple de u_n .

11.3 Développement limité

Exercice 7 (\star) Calculer le développement limité au voisinage de 0, à l'ordre indiqué :

a)
$$DL_3(0) : \exp(\sin x)$$

c)
$$DL_5(0): \frac{1}{1-x^2-x^3}$$

c)
$$DL_5(0): \frac{1}{1-x^2-x^3}$$
 e) $DL_4(0): \ln\left[\frac{1+\tan x}{1-\tan x}\right]$

b)
$$DL_4(0) : \ln(\cos x)$$

d)
$$DL_4(0): (1+x)^x$$

f)
$$DL_3(0)$$
: Arctan $\left(\frac{1+x}{1+2x}\right)$

Exercice 8 (*) Pour a > 0, on définit la fonction f_a sur $\mathbb{R}_+^* \setminus \{1\}$ par $f_a(x) = \frac{x^a \ln x}{x^2 - 1}$.

- a) Montrer que f_a se prolonge par continuité à \mathbb{R}_+ .
- b) Le prolongement ainsi obtenue est-il dérivable en 0 et en 1?

Exercice 9 (*) Donner des équivalents simples des fonctions suivants pour $x \to 0$:

a)
$$\frac{\sin(x)}{2+\cos(x)} - \frac{x}{3}$$

b)
$$\tan(\tan x) - Arcsin x$$
 c) $x^3 \sqrt[3]{x-1} + x^3$.

c)
$$x^3\sqrt[3]{x-1} + x^3$$
.

Exercice 10 (\star) Déterminer les limites suivantes :

a)
$$\lim_{x\to 0} \frac{x-\sin x}{\sin^3 x}$$

c)
$$\lim_{x \to \frac{\pi}{2}} \left[\frac{2}{\cos^2 x} + \frac{1}{\ln \sin x} \right]$$

a)
$$\lim_{x \to 0} \frac{x - \sin x}{\sin^3 x}$$
 c) $\lim_{x \to \frac{\pi}{2}} \left[\frac{2}{\cos^2 x} + \frac{1}{\ln \sin x} \right]$ **b)** $\lim_{x \to +\infty} \left[x \left(1 + \frac{1}{x} \right)^x - ex^2 \ln \left(1 + \frac{1}{x} \right) \right]$ **d)** $\lim_{x \to 0^+} \left[e - (1 + x)^{1/x} \right]^x$

d)
$$\lim_{x\to 0^+} \left[e - (1+x)^{1/x} \right]^x$$

11.4 Avec recherche d'idées

Exercice 11 (\star)

- a) En utilisant un relation simple entre tan et tan', calculer le $DL_7(0)$ de tan.
- b) Adapter cette méthode pour calculer le $DL_7(0)$ de th.

Exercice 12 (*) Pour quelles valeurs de $a,b,c \in \mathbb{R}$ la fonction $f(x) = \cos x - \frac{a+bx^2}{1+cx^2}$ est négligeable devant x^n avec n un entier maximal. Donner alors un équivalent simple de f(x) en $x \to 0$.

Exercice 13 (**) Montrer que l'application $f:]-1, +\infty[\to] - \frac{1}{e}, +\infty[, x \to xe^x \text{ est un bijection}]$ de classe C^{∞} dont la réciproque est de classe C^{∞} .

Calculer un développement limité de $f^{-1}(x)$ à l'ordre 2 en $x \to 0$.

Exercice 14 $(\star\star)$ Soit $f: \mathbb{R} \to \mathbb{R}x \mapsto \ln(1+x^2) - x$.

- a) Montrer que f est bijective.
- **b)** Calculer un $DL_4(0)$ de f.
- c) En déduire un $DL_4(0)$ de f^{-1}

Exercice 15 (**) Soit $f(x) = x^3 \sin(\frac{1}{x})$.

- a) Montrer que f admet un DL à l'ordre 2 au voisinage de 0 mais pas à l'ordre 3.
- b) Montrer que f se prolonge de manière C^1 en 0 et préciser les valeurs de f(0) et f'(0).
- c) Calculer le taux d'accroissement de f'(x) en 0. La fonction f est-elle C^2 en 0?

Problèmes 11.5

Exercice 16 (**) On recherche à étudier la fonction, pour $x \in \mathbb{R}_+^*$ par : $f(x) = \frac{1+x}{\sqrt{x}} \operatorname{Arctan} \sqrt{x}$.

- a) Montrer que f admet un développement limité à tout ordre en 0.
- b) En déduire le prolongement par continuité de f sur \mathbb{R}_+ et la valeur de f(0) et f'(0).
- c) Etudier les variations de f sur \mathbb{R}_+ . (On pourra étudier g vérifiant $g(\sqrt{x}) = f(x)$).
- d) Montrer qu'il existe des réels a, b, c tels qu'on dispose du développement asymptotique suivant:

$$f(x) =_{x \to +\infty} a\sqrt{x} + b + \frac{c}{\sqrt{x}} + o\left(\frac{1}{\sqrt{x}}\right).$$

e) Tracer la courbe de la fonction f en précisant les tangentes et asymptotes connues.

Exercice 17 $(\star \star \star)$ Pour $n \in \mathbb{N}^*$, on définit $f_n : \mathbb{R} \to \mathbb{R}, x \mapsto e^x + x^2 - nx$.

- a) Montrer que f_n admet un minimum μ_n atteint en un unique $x_n \in \mathbb{R}$.
- **b)** Montrer que $x_n \sim_{n \to +\infty} \ln n$.
- c) En déduire un équivalent de μ_n .