DM4 - Corrigé

- **Exercice 1:** 1. La fonction $\ln(1+x) x$ est dérivable sur $]-1, +\infty[$ et sa dérivée est $\frac{1}{1+x} 1 = \frac{-x}{1+x}$. Donc elle est croissante sur \mathbb{R}_- et décroissante sur \mathbb{R}_+ . Elle admet un maximum global en 0. Donc pour tout $x > -1, \ln(1+x) x \le \ln(1+0) 0 = 0$.
 - 2. On calcul les accroissements :

$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln(n)$$

$$= \frac{1}{n+1} + \ln\left(\frac{n}{n+1}\right)$$

$$= \ln\left(1 - \frac{1}{n+1}\right) - \left(-\frac{1}{n+1}\right) \le 0 \text{ avec } x = \frac{-1}{n+1} > -1$$

Donc $(u_n)_{n>0}$ est décroissante.

De manière analogue, on trouve $(v_n)_{n\geq 0}$ est croissante :

$$v_{n+1} - v_n = \frac{1}{n} - \ln\left(\frac{n+1}{n}\right)$$
$$= \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) \ge 0 \text{ avec } x = \frac{1}{n} > -1.$$

- 3. On montre que les suites sont adjacentes. On dispose des conditions de monotonies. La différence : $u_n v_n = \frac{1}{n}$ est positive et tend vers 0, donc u_n et v_n sont adjacentes et admettent une limite commune notée γ .
- 4. On a : $S_n = \sum_{k=1}^n \frac{1}{k} = u_n + \ln(n) \to +\infty$ par opération.
- 5. On a: $\sum_{k=n+1}^{pn} \frac{1}{k} = S_{pn} S_n$ $= u_{np} + \ln(np) u_n \ln(n) = u_{np} u_n + \ln(p) \to \gamma \gamma + \ln p = \ln p.$

Exercise 2: 1. On a $g\left(\frac{x+y}{2}\right) = f\left(\frac{x+y}{2}\right) - b = \frac{f(x) + f(y)}{2} - b = \frac{g(x) + b + g(y) + b}{2} - b = \frac{g(x) + g(y)}{2}$.

- 2. Soit $t \in \mathbb{R}$. On prend x = 2t et y = 0. On a $g(t) = g((2t+0)/2) = \frac{g(2t) + g(0)}{2} = g(2t)/2$. car g(0) = f(0) b = 0. Donc g(2t) = 2g(t). Puis $g(x+y) = g\left(\frac{2x+2y}{2}\right) = \frac{g(2x) + g(2y)}{2} = \frac{2g(x) + 2g(y)}{2} = g(x) + g(y)$.
- 3. Soit $x \in \mathbb{R}$. On fait une récurrence sur $n \in \mathbb{N}$. Init. Pour n = 0 g(0x) = 0 et 0g(x) = 0.

Hér. Soit $n \in \mathbb{N}$ tel que g(nx) = ng(x).

On a
$$g((n+1)x) = g(nx+x) = g(nx) + g(x) = ng(x) + g(x) = (n+1)g(x)$$
.

Conclusion la relation est valide pour $n \geq 0$.

Soit $t \in \mathbb{R}$ et x = t, y = -t. On a g(t) + g(-t) = g(t-t) = g(0) = 0. Donc g(-t) = -g(t). La fonction est impaire. Ainsi f(-nx) = -f(nx) = -nf(x) et la relation est valide pour $n \in \mathbb{Z}$.

4. Soit $r = \frac{p}{q} \in \mathbb{Q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

On a $g(rx) = pg\left(\frac{x}{q}\right)$ d'après ce qui précède.

Et
$$g(x) = g\left(q\frac{x}{q}\right) = qg\left(\frac{x}{q}\right)$$
. Donc $g\left(\frac{x}{q}\right) = \frac{1}{q}g(x)$.

Ainsi $g(rx) = p \frac{1}{a}g(x) = rg(x)$.

5. On sait que f est continue en 0. Donc par opération g est continue en 0. Ainsi $\lim_{0} g = g(0) = 0$.

Soit $a \in \mathbb{R}$ et $h \neq 0$. On a $g(a+h) = g(a) + g(h) \to_{h\to 0} g(a) + 0$ par opération. Donc $\lim_a g = g(a)$ et g est continue en g.

6. On pose a = g(1). Soit $x \in \mathbb{R}$ et $x_n = 10^{-n} \lfloor 10^n x \rfloor \in \mathbb{Q}$ tel que $x_n \to x$.

On a $g(x_n) \to g(x)$ car g est continue en x.

Et $g(x_n) = x_n g(1) = ax_n \to ax$ par opération.

Donc par unicité de la limite g(x) = ax.

7. On a pour tout $x \in \mathbb{R}$, f(x) = g(x) + b = ax + b avec $a, b \in \mathbb{R}$.

Réciproquement si il existe $a,b\in\mathbb{R}$ tel que f(x)=ax+b alors f est continue en 0. et pour $x,y\in\mathbb{R},$ $f\left(\frac{x+y}{2}\right)=a\frac{x+y}{2}+b=\frac{ax+b}{2}+\frac{ay+b}{2}=\frac{f(x)+f(y)}{2}.$

Donc l'ensemble des solutions sont les fonctions affines