Calcul matriciel

Révision de la semaine 13

Transposition (notée A^T)

Définition et stabilité par combinaison linéaire. Transposée du produit. Pour les matrices carrées : transposée d'une puissance et de l'inverse. Matrices symétriques et antisymétriques. Stabilité par combinaison linéaire.

Les sous-ensembles particuliers de $\mathcal{M}_p(\mathbb{K})$

Le groupe linéaires $GL_p(\mathbb{K})$ des matrices inversibles. Stabilité par produit. Les espaces des matrices diagonales et triangulaires. Stabilité par les opérations.

Systèmes linéaires

Principe de superposition

Système homogène associé. Systèmes compatible et incompatible. Lien entre les espaces de solutions supposant connue une solution particulière.

Ecriture matricielle

Matrice de $\mathcal{M}_{m,n}(\mathbb{R})$. Matrice augmentée de $\mathcal{M}_{m,n}(\mathbb{R}) \times \mathcal{M}_{m,1}(\mathbb{R})$. Opérations élémentaires sur les lignes et équivalence des systèmes. Matrice échelonnée et échelonnée réduite.

Pivot de Gauss-Jordan

Algorithme d'équivalence à un système échelonné réduit. Rang d'une matrice et nombre de paramètres. Formule du rang. Résolution récursive d'un système échelonné.

Liste de Questions de cours :

- a) Démontrer que pour $M \in \mathcal{M}_p(\mathbb{K}), M^{a+b} = M^a M^b$ et $M^{ab} = (M^a)^b$.
- b) Enoncer et démontrer la formule du binôme de Newton pour deux matrices qui commutent.
- c) Démontrer la stabilité des matrices triangulaires par les opérations.
- d) Calculer les puissances de $A = 2I_n + B$ avec $B^2 = I_n$.
- e) Montrer que $(AB)^{-1} = B^{-1}A^{-1}$ et que $(A^n)^{-1} = (A^{-1})^n$.
- f) Montrer que l'équivalence par lignes est une relation d'équivalence.