TD 13-Corrigé: Espace vectoriel de dimension finie

13.1 Famille de vecteurs

Indications:

Pour déterminer la nature d'une famille de vecteurs en dimension finie, il suffit de déterminer son rang. Il se calcul avec l'algorithme du Pivot de Gauss-Jordan sur la matrice des coordonnées. On utilise ensuite les caractérisations suivante :

$$\mathcal{F}$$
 est libre ssi rg $\mathcal{F}=\operatorname{Card}\mathcal{F}$ et \mathcal{F} est génératrice de E ssi rg $\mathcal{F}=\dim E$

a) On calcul le rang de ces familles : **Exo 1:**

$$\operatorname{rg}(v_1, v_2) = \operatorname{rg}\begin{pmatrix} 1 & 4 \\ 1 & 1 \\ 0 & 4 \end{pmatrix} = 2 \text{ donc la famille est libre.}$$

$$\operatorname{rg}(v_2, v_3) = \operatorname{rg}\begin{pmatrix} 4 & 2 \\ 1 & -1 \\ 4 & 4 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 1 & -1 \\ 0 & 6 \\ 0 & 8 \end{pmatrix} = 2 \text{ donc la famille est libre.}$$

$$\operatorname{rg}(v_1, v_3) = \operatorname{rg}\begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 0 & 4 \end{pmatrix} = 2 \text{ donc la famille est libre.}$$

b) De même
$$\operatorname{rg}(v_1, v_2, v_3) = \operatorname{rg}\begin{pmatrix} 1 & 4 & 2 \\ 1 & 1 & -1 \\ 0 & 4 & 4 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 1 & 1 & -1 \\ 0 & 3 & 3 \\ 0 & 4 & 4 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = 2.$$
 Donc les vecteurs sont coplanaires et la famille est liée.

Exo 2 : On peut calculer le rang dans chacun des cas :

a) On a
$$\operatorname{rg}(\left(\frac{3}{5}\right),\left(\frac{1}{1}\right),\left(\frac{2}{3}\right)) = \operatorname{rg}\left(\frac{3}{5},\frac{1}{1},\frac{2}{3}\right) = 2.$$
 La famille est génératrice de \mathbb{R}^2 mais n'est pas libre.

La famille est generatrice de
$$\mathbb{R}^2$$
 mais n'est pas libre.

b) $\operatorname{rg}\left(\left(\frac{2}{1}\right), \left(\frac{9}{1}\right), \left(\frac{2}{1}\right)\right) = \operatorname{rg}\left(\frac{2}{1} \quad 0 \quad 2 \\ 1 \quad 2 \quad 0 \\ 0 \quad 1 \quad 1\right) = \operatorname{rg}\left(\frac{1}{0} \quad 1 \quad 1 \\ 0 \quad 2 \quad -1\right) = \operatorname{rg}\left(\frac{1}{0} \quad 1 \quad 1 \\ 0 \quad 0 \quad -3\right) = 3.$

Denote la famille est libre et génératrice de \mathbb{R}^3 circi s'est une base.

Donc la famille est libre et génératrice de \mathbb{R}^3 ainsi c'est une base.

- c) De même $\operatorname{rg}\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\0 \end{pmatrix}\right) = 2$ est libre mais pas génératrice de \mathbb{R}^3 .
- d) Enfin rg $\left(\left(\frac{3}{5}\right),\left(\frac{1}{1}\right)\right)=2$ est libre et génératrice de $\mathbb{R}^2,$ c'est donc une base.

Exo 3: On note $u_1 = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{2} \end{pmatrix}$ et $u_2 = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$. Ils sont non colinéaires et donc engendre un plan que l'on peu noté $P = \text{Vect}_{\mathbb{R}}(u_1, u_2)$. Soit $v \in \mathbb{R}^4$. On a les équivalences suivantes : Le vecteur $v \in P$ ssi les vecteurs u_1, u_2 et v sont coplanaires ssi $rg(u_1, u_2, v) = 2$.

Pour
$$v_1 = \begin{pmatrix} -3 \\ 2 \\ -3 \\ 8 \end{pmatrix}$$
, on a $\operatorname{rg}(u_1, u_2, v_1) = \operatorname{rg}\begin{pmatrix} -1 & 0 & -3 \\ 0 & 1 & 2 \\ 1 & -3 & -3 \\ 2 & 1 & 8 \end{pmatrix} = \dots = 2$. Donc $v_1 \in P$.
Pour $v_2 = \begin{pmatrix} -1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$, on a $\operatorname{rg}(u_1, u_2, v_2) = \operatorname{rg}\begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 3 \\ 1 & -3 & 2 \\ 2 & 1 & 1 \end{pmatrix} = \dots = 3$. Donc $v_2 \notin P$.

Exo 4: a) On note
$$F_1 = \text{Vect } \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \right\}.$$

Sa dimension est
$$\dim_{\mathbb{R}} F_1 = \operatorname{rg} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 4 & 0 \end{pmatrix} = \operatorname{rg} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 3 & 0 \end{pmatrix} = \operatorname{rg} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -2 \end{pmatrix} = 3.$$

Donc F_1 est un espace de dimension 3 engendré par 3 vecteurs $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} \right\}$ et ils forment donc une base de ce sous-espace.

b) On note
$$F_2 = \text{Vect } \left\{ \begin{pmatrix} 2\\1\\3\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\-3\\0 \end{pmatrix} \right\}.$$

Sa dimension est
$$\dim_{\mathbb{R}} F_2 = \operatorname{rg} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ 3 & 0 & -3 \\ 1 & 1 & 0 \end{pmatrix} \dots = \operatorname{rg} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 2.$$

Donc les vecteurs sont liés et
$$\begin{pmatrix} 1\\1\\-3\\0 \end{pmatrix} = \begin{pmatrix} 1\\2\\0\\1 \end{pmatrix} - \begin{pmatrix} 2\\1\\3\\1 \end{pmatrix}$$
.

Ainsi $F_2 = \text{Vect}\left\{ \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ \frac{2}{0} \end{pmatrix} \right\}$ est bien une base de ce sous-espace de dimension 2.

c) On note
$$F_3 = \text{Vect} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 5 \\ 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \\ 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

On remarque que
$$\begin{pmatrix} 5\\3\\1\\2 \end{pmatrix} = \begin{pmatrix} 5\\2\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}$$
 et $\begin{pmatrix} 5\\4\\1\\4 \end{pmatrix} = \begin{pmatrix} 5\\2\\1\\0 \end{pmatrix} + 2\begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}$.

Ainsi
$$F_3 = \text{Vect}\left\{\begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}, \begin{pmatrix} 5\\2\\1\\0 \end{pmatrix}\right\}$$
 avec des vecteurs non-colinéaires.

Donc
$$F_3$$
 admet pour base extraite $\left\{ \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}, \begin{pmatrix} 5\\2\\1\\0 \end{pmatrix} \right\}$.

Exo 5: On note $\mathcal{B}_0 = (1, X, X^2, X^3)$ la base canonique de $\mathbb{R}_3[X]$.

On a
$$p_1(X) = 1 - 3X + 3X^2 - X^3 = \begin{pmatrix} 1 \\ -3 \\ 3 \\ -1 \end{pmatrix}_{\mathcal{B}_0}, \ p_2(X) = X - 2X^2 + X^3 = \begin{pmatrix} 0 \\ 1 \\ -2 \\ 1 \end{pmatrix}_{\mathcal{B}_0},$$

$$p_3(X) = X^2 - X^3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}_{\mathcal{B}_0} \text{ et } p_4(X) = X^3 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}_{\mathcal{B}_0}.$$

Donc
$$\operatorname{rg}(p_1, p_2, p_3, p_4) = \operatorname{rg} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 3 & -2 & 1 & 0 \\ -1 & 1 & -1 & 1 \end{pmatrix} = 4 = \operatorname{rg}(\mathcal{F}) = \dim(\mathbb{R}_3[X])$$

Par caractérisation, la famille est une base de $\mathbb{R}_3[X]$ de dimension 4.

<u>Indications</u>: Dans les exemples plus abstraits, on peut revenir à la définition :

 $(u_1,...,u_n)$ est libre ssi $\forall (\lambda_1,...,\lambda_n) \in \mathbb{K}^n, \sum_{k=1}^n \lambda_k u_k = 0_E \Rightarrow \lambda_1 = ... = \lambda_n = 0_\mathbb{K}$ $(u_1,...,u_n)$ est génératrice de E ssi $\forall v \in E, \exists (\lambda_1,...,\lambda_n) \in \mathbb{K}^n, v = \sum_{k=1}^n \lambda_k u_k.$

Exo 6: a) Soient
$$\lambda_1, ..., \lambda_n \in \mathbb{R}$$
 tel que $\sum_{i=1}^n \lambda_i \epsilon_i = 0_E$.

a) Soient
$$\lambda_1, ..., \lambda_n \in \mathbb{R}$$
 tel que $\sum_{i=1}^n \lambda_i \epsilon_i = 0_E$.
Alors $0_E = \sum_{i=1}^n \lambda_i \sum_{j=1}^i e_j = \sum_{1 \leq j \leq i \leq n} \lambda_i e_j = \sum_{j=1}^n \sum_{i=j}^n \lambda_i e_j$.
Donc $\forall j \in [1, n], \sum_{i=j}^n \lambda_i = 0$ car $(e_1, ..., e_n)$ est une base de l'espace.

Donc
$$\forall j \in [1, n], \sum_{i=j}^{n} \lambda_i = 0$$
 car $(e_1, ..., e_n)$ est une base de l'espace

Donc pour tout
$$j \in [1, n]$$
, $\lambda_j = \sum_{i=j}^n \lambda_i - \sum_{i=j+1}^n \lambda_i = 0 - 0 = 0$.
Ainsi $\lambda_1 = \dots = \lambda_n = 0$ donc la famille $(\epsilon_1, \dots \epsilon_n)$ est libre.

Ainsi
$$\lambda_1 = ... = \lambda_n = 0$$
 donc la famille $(\epsilon_1, ... \epsilon_n)$ est libre.

De plus la famille est composée de n vecteurs identique à la dimension de l'espace.

Donc par caractérisation B' est une base de E.

b) On a :
$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}_B = \sum_{i=1}^n a_i e_i = \sum_{i=1}^n a_i (\epsilon_i - \epsilon_{i-1})$$
 en posant $\epsilon_0 = 0_E$.

Donc
$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}_B = \sum_{i=1}^n a_i \epsilon_i - \sum_{i=1}^{n-1} a_{i+1} \epsilon_i = \begin{pmatrix} a_1 - a_2 \\ a_2 - a_3 \\ \vdots \\ a_n \end{pmatrix}_{B'}$$
.

On a
$$u = \sum_{k=1}^{n} (-1)^k w_k = \sum_{k=1}^{n} (-1)^k (e_k + e_{k+1})^k$$

- **Exo 7:** Pour simplifier, on ajoute la notation $e_{n+1} = e_1$. On a $u = \sum_{k=1}^n (-1)^k w_k = \sum_{k=1}^n (-1)^k (e_k + e_{k+1})$ $= \sum_{k=1}^n (-1)^k e_k + \sum_{k=2}^{n+1} (-1)^{k-1} e_k$ par changement d'indices dans la 2nd somme. $= \sum_{k=1}^n (-1)^k e_k \sum_{k=2}^{n+1} (-1)^k e_k = (-1)e_1 (-1)^{n+1} e_{n+1}$ par relation de Chasles. $= [-1 + (-1)^n] e_1$ car $e_{n+1} = e_1$.

Ainsi
$$u = \begin{cases} -2e_1 & \text{si } n \text{ est impair} \\ 0 & \text{si } n \text{ est pair} \end{cases}$$

Si n est pair, on a trouvé $\sum_{k=1}^{n} (-1)^k w_k = u = 0_E$ une relation de liaison de la famille. Ce n'est pas une base car elle n'est pas libre.

Si n est impair, on note $F = \text{Vect}(w_1, ..., w_n)$. On a $e_1 = \frac{-1}{2}u \in F$ par le calcul précédent. Puis $e_2 = w_1 - e_1 \in F$ car F est stable par opérations.

On démontre ainsi par récurrence immédiate que $e_{k+1} = w_k - e_k \in F$ pour tout $1 \le k \le n$. Donc $E = \text{Vect}(e_1, ..., e_n) \subset F$ permet de démontrer que $E = F = \text{Vect}(w_1, ..., w_n)$. Ceci montre que la famille est génératrice de E et elle est constituée de n vecteurs, par caractérisation, c'est une base de E.

a) Soient $\lambda_1, ..., \lambda_{n+1} \in \mathbb{K}$ tels que $\sum_{i=1}^{n+1} \lambda_i u_i = 0_E$.

Alors
$$\sum_{i=1}^{n} \lambda_i u_i = -\lambda_{n+1} u_{n+1}$$
.

Alors $\sum_{i=1}^{n} \lambda_i u_i = -\lambda_{n+1} u_{n+1}$. Donc $\lambda_{n+1} = 0$ car sinon $u_{n+1} = \frac{-1}{\lambda_{n+1}} \sum_{i=1}^{n} \lambda_i u_i \in \text{Vect}(u_1, ..., u_n)$ Absurde. Puis $\sum_{i=1}^{n} \lambda_i u_i = 0_E$ donne $\lambda_1 = ... = \lambda_n = 0$ car la famille est libre. Ainsi $\lambda_1 = ... = \lambda_n = \lambda_{n+1} = 0$ donc $(u_1, ..., u_n, u_{n+1})$ est une famille libre.

b) On écrit $u_{n+1} = \sum_{i=1}^n \mu_i u_i$. Soit $v \in E$.

La famille $(u_1,...,u_n,u_{n+1})$ est génératrice donc ils existent des scalaires tels que :

$$v = \sum_{i=0}^{n+1} \lambda_i u_i = \sum_{i=1}^n \lambda_i u_i + \lambda_{n+1} u_{n+1}$$

$$= \sum_{i=1}^n \lambda_i u_i + \lambda_{n+1} \sum_{i=1}^n \mu_i u_i = \sum_{i=1}^n (\lambda_i + \lambda_{n+1} \mu_i) u_i \in \text{Vect } (u_1, ..., u_n).$$
A incident formula (v. ..., u) set him was formille génératries.

Ainsi la famille $(u_1, ..., u_n)$ est bien une famille génératrice.

Sous-espace vectoriel

<u>Indications</u>: En dimension finie, tous les sous-espaces vectoriels peuvent s'écrient F = $\operatorname{Vect} \mathcal{F}$.

Exo 9: a) On a $F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ tel que } y = 2x \text{ et } z = -3x \right\}$

 $=\left\{\begin{pmatrix} x\\2x\\-3x\end{pmatrix}\right\}$ pour $x\in\mathbb{R}$ = Vect $_{\mathbb{R}}\begin{pmatrix} 1\\2\\-3\end{pmatrix}$. Donc F est bien un espace vectoriel.

- b) On a $0_{\mathbb{R}^2} = \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right) \notin G$ donc G n'est pas un espace vectoriel.
- c) On a $u_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $u_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ deux vecteurs de H mais $u_1 + u_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \notin H$. Donc H n'est pas un espace vectoriel.
- d) On a $u = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \in I$ mais $-u \notin I$ donc I n'est pas un espace vectoriel.
- e) On a $J = \{u\begin{pmatrix} 1\\1 \end{pmatrix} + v\begin{pmatrix} 1\\-1 \end{pmatrix} \text{ pour } u, v \in \mathbb{R}\} = \operatorname{Vect}_{\mathbb{R}}\left(\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix}\right) = \mathbb{R}^2$. Donc J est un espace vectoriel.

 $\textbf{Exo 10:} \quad \textbf{a)} \ \ \text{On a:} \\ A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \ x+y+z=0 \right\} = \left\{ \begin{pmatrix} -y-z \\ y \\ z \end{pmatrix} \ \ \text{pour } y,z \in \mathbb{R} \right\} = \text{Vect}_{\mathbb{R}} \left(\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right).$ Ainsi A est un ss- \mathbb{R} -ev de dimension 2 (un plan vectoriel) avec pour base : $\left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right).$

b) On résout le système $\begin{cases} x+y+z &= 0 \\ x+2y+3z &= 0 \end{cases} \Leftrightarrow \begin{cases} x+y+z &= 0 \\ y+2z &= 0 \end{cases}$ échelonné homogène de

Donc $B = \left\{ \begin{pmatrix} z \\ -2z \end{pmatrix} \text{ pour } z \in \mathbb{R} \right\} = \text{Vect } \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$

Donc B est un ss- \mathbb{R} -ev de dimension 1 (une droite vectorielle) avec pour base $(\begin{pmatrix} 1 \\ -2 \end{pmatrix})$.

a) L'appartenance $A \in \mathcal{E}$ se traduit par $S(A) = \sum_{i=1}^n a_{i,j_0} = \sum_{j=1}^n a_{i_0,j} = \sum_{i=1}^n a_{i,i} = \sum_{j=1}^n a_{i,j}$ $\sum_{i=1}^{n} a_{i,n+1-i}$ pour tout $i_0, j_0 \in [1, n]$ et $S(A) \in \mathbb{R}$ la valeur de la somme.

Non vide: La matrice nulle appartient à \mathcal{E} avec la somme S(0) = 0.

Stable par combinaison linéaire : Soit $A, B \in \mathcal{E}$ et $\lambda \in \mathbb{R}$.

Pour une ligne $i_0 \in \llbracket 1, n \rrbracket$, on a: $\sum_{j=1}^n [A + \lambda B]_{i_0,j} = \sum_{j=1}^n [A]_{i_0,j} + \lambda \sum_{j=1}^n [B]_{i_0,j} = S(A) + \lambda S(B).$ Pour une colonne $j_0 \in \llbracket 1, n \rrbracket$, on a:

 $\sum_{i=1}^{n} [A + \lambda B]_{i,j_0} = \sum_{i=1}^{n} [A]_{i,j_0} + \lambda \sum_{i=1}^{n} [B]_{i,j_0} = S(A) + \lambda S(B).$ Pour la 1er diagonale, on a :

 $\sum_{i=1}^{n} [A + \lambda B]_{i,i} = \sum_{i=1}^{n} [A]_{i,i} + \lambda \sum_{i=1}^{n} [B]_{i,i} = S(A) + \lambda S(B).$

Pour la 2eme diagonale, on a :

 $\sum_{i=1}^{n} [A + \lambda B]_{i,n+1-i} = \sum_{i=1}^{n} [A]_{i,n+1-i} + \lambda \sum_{i=1}^{n} [B]_{i,n+1-i} = S(A) + \lambda S(B).$ Donc $A + \lambda B \in \mathcal{E}$ avec pour somme $S(A + \lambda B) = S(A) + \lambda S(B)$.

b) On a $\mathcal{N} = \{A \in \mathcal{E} \text{ tel que } S(A) = 0\} = \text{Ker } S \text{ donc c'est un sous-espace de } \mathcal{E}.$ On note J=(1). On a $J\in\mathcal{E}$ et $\mathcal{C}=\operatorname{Vect}_{\mathbb{R}}J$ est un ss-ev de \mathcal{E} .

Puis on a S(J) = n. Donc pour $A \in \mathcal{N} \cap \mathcal{C}$, on a $A = \lambda J$ puis $0 = S(A) = \lambda n$ et ainsi

 $\lambda=0$. Donc \mathcal{N} et \mathcal{C} sont en somme directe. Puis pour $A\in\mathcal{E}$, on pose $\lambda=\frac{S(A)}{n}$. On a $A=(A-\lambda J)+\lambda J\in\mathcal{N}+\mathcal{C}$ car $S(A-\lambda J)=$ $S(A) - \lambda n = 0.$

Donc $\mathcal{E} = \mathcal{N} \oplus \mathcal{C}$.

- c) Pour $N \in \mathcal{N}$, on remarque que $N^T \in \mathcal{N}$. On pose $S = \frac{1}{2}(N + N^T)$ et $A = \frac{1}{2}(N N^T)$. On a S symétrique et A antisymétrique étant l'unique décomposition sur $\mathcal{M}_n(\mathbb{R})$. Puis $S \in \mathcal{N}$ et $A \in \mathcal{N}$ car \mathcal{N} est stable par combinaison linéaire. Donc M = S + A est l'unique décomposition sur $\mathcal{N} = \mathcal{S} \oplus \mathcal{A}$.

On a
$$C = \operatorname{Vect}_{\mathbb{R}} J$$
,
$$A = \left\{ \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} \text{ tel que } 0 = a + b = -a + c = -b - c \right\} = \operatorname{Vect}_{\mathbb{R}} \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

$$S = \left\{ \begin{pmatrix} a & b & -a - b \\ b & c & -b - c \\ -a - b & -b - c & a + 2b + c \end{pmatrix} \text{ tel que } \left\{ 2a + 2b + 2c & = 0 \\ -2a - 2b + c & = 0 \right\} = \operatorname{Vect}_{\mathbb{R}} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

$$\operatorname{Puis} \mathcal{E} = C \oplus S \oplus A = \operatorname{Vect}_{\mathbb{R}} \left\{ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} a + b & a - b + c & a - c \\ a - b - c & a & a + b + c \\ a + c & a + b - c & a - b \end{pmatrix} \text{ pour } a, b, c \in \mathbb{R} \right\}.$$

$$\operatorname{Existing } A = \operatorname{Existing } A$$

Indications: La formule de Grassmann permet de calculer efficacement certaines dimensions:

$$\dim(F_1 + F_2) = \dim F_1 + \dim F_2 - \dim(F_1 \cap F_2)$$

Exo 12 : On commence par considérer une base de $\mathcal{B}_0 = (e_1,...,e_p)$ de $F_1 \cap F_2$ avec p=0 $\dim_{\mathbb{R}}(F_1 \cap F_2).$

Puis on la complète en une base $\mathcal{B}_1 = \mathcal{B}_0 \cup \mathcal{F}_1 = (e_1, ..., e_p, u_1, ..., u_{n-p})$ de F_1 avec $p \le n = \dim_{\mathbb{R}} F_1 = \dim_{\mathbb{R}} F_2.$

On la complète également en une base $\mathcal{B}_2 = \mathcal{B}_0 \cup \mathcal{F}_2 = (e_1, ..., e_p, v_1, ..., v_{n-p})$ de F_2 .

On pose $G_0 = \text{Vect}_{\mathbb{R}}(u_1 + v_1, ..., u_{n-p} + v_{n-p}).$

On a $F_1 + G_0 = \text{Vect}(e_1, ..., e_p, u_1, ..., u_{n-p}, u_1 + v_1, ..., u_{n-p} + v_{n+p})$

= Vect $(e_1, ..., e_p, u_1, ..., u_{n-p}, v_1, ..., v_{n+p})$

 $= \text{Vect}(e_1, ..., e_p, u_1, ..., u_{n-p}) + \text{Vect}(e_1, ..., e_p, v_1, ..., v_{n-p}) = F_1 + F_2.$

Puis $\dim_{\mathbb{R}}(F_1 + G_0) = \dim_{\mathbb{R}}(F_1 + F_2) = \dim_{\mathbb{R}}(F_1) + \dim_{\mathbb{R}}(F_2) - \dim_{\mathbb{R}}(F_1 \cap F_2) = 2n - p$ d'après la formule de Grassmann.

Et $\dim_{\mathbb{R}}(F_1 \cap G_0) = \dim_{\mathbb{R}} F_1 + \dim_{\mathbb{R}} G_0 - \dim_{\mathbb{R}} (F + G_0)$

$$= n + \operatorname{rg}(u_1 + v_1, ..., u_{n-p} + v_{n-p}) - (2n - p) \le n + (n - p) - (2n - p) = 0.$$

Donc $F_1 \cap G_0 = \{0\}$ sont en somme directe avec $F_1 \oplus G = F_1 + F_2$.

On obtient par symétrie du problème et de la définition de G que $F_2 \oplus G = F_1 + F_2$. Enfin on peut considérer un supplémentaire H de $F_1 + F_2$ dans E càd $H \oplus (F_1 + F_2) = E$. Et ainsi on obtient $E = (F_1 + F_2) \oplus H = F_i \oplus G_0 \oplus H$ pour i = 1 ou 2. Et donc $G = G_0 \oplus H$ est un supplémentaire commun de F_1 et F_2 dans E.

Exo 13: a) On a
$$F_1 = \left\{ \begin{pmatrix} -y - z - t \\ y \\ z \\ t \end{pmatrix} \text{ pour } y, z, t \in \mathbb{R} \right\} = \operatorname{Vect}_{\mathbb{R}} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$
On a $F_2 = \left\{ \begin{pmatrix} -y + z + t \\ y \\ z \\ t \end{pmatrix} \text{ pour } y, z, t \in \mathbb{R} \right\} = \operatorname{Vect}_{\mathbb{R}} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$
Dong so sont doe sepaces vectorials on tent qu'espace argendré.

b) Puis
$$\dim_{\mathbb{R}}(F_1) = \operatorname{rg}\left\{\begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} \right\} = 3.$$
Et $\dim_{\mathbb{R}}(F_2) = \operatorname{rg}\left\{\begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\} = 3.$
Puis $\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \in F_2 \setminus F_1 \text{ donc } F_1 \subsetneq F_1 + F_2 \subset \mathbb{R}^4$
donc $3 = \dim_{\mathbb{R}}F_1 < \dim_{\mathbb{R}}(F_1 + F_2) \le \dim_{\mathbb{R}}\mathbb{R}^4 = 4.$ Ainsi $\dim_{\mathbb{R}}(F_1 + F_2) = 4$ et d'après la formule de Grassmann $\dim_{\mathbb{R}}(F_1 \cap F_2) = 3 + 3 - 4 = 2.$

Exo 14: On a $\dim_R F = \dim_{\mathbb{R}}(F+H) + \dim_{\mathbb{R}}(F\cap H) - \dim_R H = \dim_{\mathbb{R}}(G+H) + \dim_{\mathbb{R}}(G\cap H) - \dim_R H = \dim_{\mathbb{R}}G$. De plus, on a $F \subset G$ donc ce sont les mêmes espaces F = G.

Le résultat est Faux si on une des trois hypothèses n'est pas vérifiées.

Si on n'a pas (iii) ceci est trivial.

Si on a (iii) c'est à dire $F \subseteq G$.

Alors pour H=F, on a $F\cap H=F=G\cap H$ mais pas $F+H=F\neq G=G+H.$

Et pour H = G, on a F + H = G = G + H mais $F \cap H = F \neq G = G \cap H$.

- **Exo 15:** a) On le démontre par double inclusion en passant aux éléments. (\subset) Soit $u \in (F+G) \cap H$ alors $u = u_F + u_G$ avec $u_F \in F$ et $u_G \in G$. Puis $u_G = u - u_F \in H$ car $u, u_F \in H$. Donc $u_G \in G \cap H$ et $u = u_F + u_G \in F + (G \cap H)$. (\supset) Soit $u = u_F + u_0 \in F + (G \cap H)$. On a $u \in H$ car $u_F, u_0 \in H$. Puis $u = u_F + u_0 \in F + G$ donc $u \in (F+G) \cap H$.
 - b) $\underline{\operatorname{1er\ cas}\ F\subset H}$: Alors $F\cap H=F$ et F+H=H. Donc $(F+G)\cap (F+H)=(F+G)\cap H=F+(G\cap H)=(F\cap H)+(G\cap H)$.

<u>2eme cas $G \subset H$ </u>: Alors $(F+G) \cap H = (F \cap H) + (G \cap H)$ par symétrie des rôles de F et G.

Puis
$$G \cap H = G$$
 et $F + G \subset F + H$ donc $(F + G) \cap (F + H) = F + G = F + (G \cap H)$.

c) On a toujours $(F+G)\cap H\supset F\cap H+G\cap H$. Car pour $u=u_F+u_G\in (F\cap H)+(G\cap H)$, on a $u\in F+G$ et $u\in H$ car $u_F,u_G\in H$.

Et on a $F + (G \cap H) \subset (F + G) \cap (F + H)$ car pour $u = u_F + u_0 \in F + (G \cap H)$. On a $u = u_F + u_0 \in F + G$ et $u = u_F + u_0 \in F + H$. Donc $u \in (F + G) \cap (F + H)$.

Dans \mathbb{R}^2 , si l'on prend trois droite D_1, D_2 et D_3 deux a deux non confondues. On a $D_i \cap D_j = \{0\}$ et $D_i + D_j = \mathbb{R}^2$ pour $i \neq j$. Puis $(D_1 + D_2) \cap D_3 = \mathbb{R}^2 \cap D_3 = D_3 \neq \{0\} = \{0\} + \{0\} = D_1 \cap D_3 + D_2 \cap D_3$. Et $D_1 + (D_2 \cap D_3) = D_1 + \{0\} = D_1 \neq \mathbb{R}^2 = \mathbb{R}^2 + \mathbb{R}^2 = (D_1 + D_2) \cap (D_1 + D_3)$.

 $CCL: Il n'y a donc pas de règles de distributivité simples entre les opérations <math>\cap$ et +

sur les espaces vectoriels.