DM8 - Corrigé

Exercice 1: 1. L'application $p_2: E \times F \to F, (u_E, u_F) \mapsto u_F$ est une application linéaire et $\operatorname{Ker} p_2 = G_1$. Donc G_1 est un ss-ev de $E \times F$.

De plus, l'application, $\varphi_1 = p_1|_{G_1} : G_1 \to E, (u_E, 0_F) \mapsto u_E$ est une bijection linéaire. Donc G_1 est isomorphe à E.

2. De même $G_2 = \text{Ker} p_1$ avec $p_1 : E \times F \to E, (u_E, u_F) \mapsto u_E$ est un ss-ev de $E \times F$ isomorphe à F.

On a $G_1 \cap G_2 = \{0_E\} \times \{0_F\} = \{(0_E, 0_F\} \text{ donc la somme est directe.}$

Tout vecteur $u=(u_E,u_F)\in E\times F$ s'écrit sous la forme $u=(u_E,0_F)+(0_E,u_F)\in G_1+G_2$ donc la somme est totale.

3. On a $\dim G_1 = \dim E$ et $\dim G_2 = \dim F$ car les espaces sont isomorphes.

Puis $\dim(E \times F) = \dim G_1 + \dim G_2$ car ils sont supplémentaires.

Donc $\dim(E \times F) = \dim E + \dim F$.

4. En utilisant l'isomorphisme naturel : $\varphi: E^{n+1} \to E^n \times E, (u_1, ..., u_n, u_{n+1}) \mapsto ((u_1, ..., u_n), u_{n+1})$ et la question précédente, on obtient $\dim E^{n+1} = \dim E^n + \dim E$.

Puis une récurrence immédiate, démontre que $\dim E^n = n \dim E$ pour tout $n \ge 1$.

Exercice 2: 1. Si $\deg(P) \leq n$ alors $\deg\left(\frac{1}{n}P'\right) \leq n-1$. Donc l'application est bien définie.

Les ensembles $\mathbb{R}_n[X]$ et $\mathbb{R}_{n-1}[X] \times \mathbb{R}$ sont des \mathbb{R} -ev de même dimension n+1 d'après l'exercice précédent.

Soit $P_1, P_2 \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$.

On a $f_n(P_1 + \lambda P_2) = \dots = f_n(P_1) + \lambda f_n(P_2)$ par le calcul. Donc l'application est linéaire.

Enfin $P \in \text{Ker} f_n$ ssi P' = 0 et $\int_0^1 P = 0$

ssi $\exists k \in \mathbb{R}, P = k$ et $\int_0^1 k = k = 0$ ssi P = 0. Donc $\operatorname{Ker} f_n = \{0\}$ et l'application est injective.

Par caractérisation par la dimension, f_n est un isomorphisme.

2. On démontre par récurrence l'existence et l'unicité d'un $B_n \in \mathbb{R}_n[X]$.

Init. n = 0 L'énoncé fixe $B_0(X) = 1 \in \mathbb{R}_0[X]$.

Hérédité Soit $n \in \mathbb{N}$ tel que $B_n(X) \in \mathbb{R}_n[X]$ est fixé de manière unique. Alors $(B_n, 0) \in \mathbb{R}_n[X] \times \mathbb{R}$ donc il admet un unique antécédent par f_{n+1} . C'est à dire qu'il existe un unique $P \in \mathbb{R}_{n+1}[X]$ tel que $\frac{1}{n+1}P' = B_n$ et $\int_0^1 P = 0$. Ce polynôme $P = B_{n+1}$ est donc l'unique solution dans $\mathbb{R}_{n+1}[X]$ par définition de bijection.

3. On a $B_1 = X + c$ par intégration puis c = -1/2 pour que $\int_0^1 B_1 = 0$. Donc $B_1(X) = X - 1/2$.

On a $B_2' = 2B_1 = 2X - 1$ puis $B_2(X) = X^2 - X + c$ donc $B_2(X) = X^2 - X + \frac{1}{6}$ afin que $\int_0^1 B_2 = 0$.

De même, on trouve $B_3(X) = X^3 - \frac{3}{2}x^2 + \frac{1}{2}x$.

4. On montre par récurrence que $B_n(X) = X^n + \dots$

On a déjà vérifié l'hypothèse pour $0 \le n \le 3$.

Hérédité : On a $B_{n+1}'=(n+1)B_n=(n+1)X^n+\dots$ par HR.

Donc $B_{n+1} = X^{n+1} + \dots$ en primitivant le polynôme.

5. On a $B_0(1-X)=1=B_0(X)$ donc la proposition est vraie au rang n=0.

Hérédité : Soit $n \in \mathbb{N}$ tel que $B_n(1-X) = (-1)^n B_n(X)$.

On a $[B_{n+1}(1-X)]' = -B'_{n+1}(1-X) = -(n+1)B_n(1-X) = (n+1)(-1)^{n+1}B_n(X)$ par HR.

Et $\int_0^1 B_{n+1}(1-t) dt = \int_0^1 B_{n+1}(u) du = 0$ avec le changement de variable u = 1-t. Ainsi $f_{n+1}(B_{n+1}(1-X)) = ((-1)^{n+1}B_n(X), 0) = (-1)^{n+1}(B_n, 0) = (-1)^{n+1}f_{n+1}(B_{n+1}) = f_{n+1}((-1)B_{n+1}(X))$. Ainsi $B_{n+1}(1-X) = (-1)^{n+1}B_{n+1}(X)$ par injectivité de f_{n+1} .

N.Provost PCSI1 2024-2025

- 6. De même, on a $B_0(X+1) B_0(X) = 1 1 = 0$. Puis $(B_{n+1}(X+1) - B_{n+1}(X))' = (n+1)[B_n(X+1) - B_n(X)] = (n+1)nX^{n-1} = [(n+1)X^n]'$ par HR. Et en X=0, on a $B_{n+1}(1) - B_{n+1}(0) = \int_0^1 B'_{n+1}(t) dt = \int_0^1 (n+1)B_n = 0$. Donc $B_{n+1}(X+1) - B_{n+1}(X) = (n+1)X^n$. 7. Par telescopage, $S = \sum_{k=0}^{n-1} B_3(k+1) - B_3(k) = B_3(n) - B_3(0) = B_3(n) = \frac{2n^3 - 3n^2 + n}{2}$.

D'après la question précédente, $S=\sum_{k=0}^{n-1}3k^2=3\sum_{k=1}^{n-1}k^2$. Donc $\sum_{k=1}^nk^2=\frac{2n^3-3n^2+n}{6}+n^2=\frac{2n^3+3n^2+n}{6}=\frac{n(n+1)(2n+1)}{6}$.

PCSI1 2024-2025 N.Provost