Correspondance entre applications linéaires et matrices

Révision de la semaine 29

Déterminants

Révision de la semaine 29

Espace préhilbertien réel

Généralités

Produit scalaire et norme associée.

Exemple de référence sur \mathbb{R}^n , $C^0([a,b],\mathbb{R})$, $\mathcal{M}_{n,p}(\mathbb{R})$ et $\mathbb{R}_n[X]$.

Inégalité de Cauchy-Swartz. Inégalité triangulaire.

Identités remarquables, du parallélogramme et de polarisation.

Orthogonalité

Les familles orthogonales sont libres.

Les sous-espaces F et F^{\perp} sont en somme directe orthogonale.

Calculs des coordonnées, de la norme et du produit scalaire à l'aide d'une base orthonormée.

Procédé d'orthonormalisation de Gram-Schmidt.

Projecteur orthogonaux

Si F est de dimension finie alors $E = F \oplus F^{\perp}$ et $(F^{\perp})^{\perp} = F$.

Formule $p_F(x) = \sum_{i=1}^p \langle x|b_i\rangle b_i$ avec $(b_1,...,b_p)$ une base orthonormée d'un sous-espace F.

Distance d'un vecteur à un sous-espace. Inégalité de Bessel.

Liste de Questions de cours :

- a) Montrer que $\mathcal{M}at_{\mathcal{B}_E,\mathcal{B}_G}(g\circ f)=\mathcal{M}at_{\mathcal{B}_F,\mathcal{B}_G}(g)\mathcal{M}at_{\mathcal{B}_E,\mathcal{B}_F}(f)$.
- **b)** Calculer le déterminant de Vandermonde $\det(C_1,...,C_n)$ avec $C_k=(1,x_k,...,x_k^{n-1})^T$.
- c) Calculer $\chi_A = \det(XI_3 A)$ pour $A \in \mathcal{M}_3(\mathbb{R})$ donnée par l'examinateur.
- d) Démontrer l'inégalité de Cauchy-Schwartz.
- e) Montrer que $\langle A|B\rangle = Tr(A^TB)$ est un produit scalaire sur $\mathcal{M}_{n,p}(\mathbb{R})$.
- f) Montrer que $\langle P|Q\rangle = \int_a^b P(t)Q(t) dt$ est un produit scalaire sur $\mathbb{R}_n[X]$.

Exercices d'Application du Cours

- 1. Soit $E = \mathbb{R}_n[X]$ et $\langle P|Q \rangle = \sum_{k=0}^n P^{(k)}(1)Q^{(k)}(1)$.
 - (a) Montrer que $\langle .|. \rangle$ est bien un produit scalaire sur E.
 - (b) Pour n=2, déterminer une base orthonormée de E échelonnée en degré.
 - (c) On pose $F = \text{Vect}_{\mathbb{R}}(X)$. Calculer F^{\perp} .
 - (d) En déduire la distance de X^2 à F.
- 2. Soit $E = \mathbb{R}^2$ et $\langle u|v \rangle = 2u_1v_1 u_1v_2 u_2v_1 + u_2v_2$ pour $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ et $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$
 - (a) Montrer que $\langle . | . \rangle$ est bien un produit scalaire sur E.
 - (b) Déterminer une base orthonormée de E.
 - (c) Déterminer la distance de $u = \begin{pmatrix} x \\ y \end{pmatrix}$ à l'axe des abscisses.

Devoir libre

On considère
$$s: \mathbb{R}^3 \to \mathbb{R}^3$$
, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \frac{1}{3} \begin{pmatrix} x+2y+2z \\ 2x+y-2z \\ 2x-2y+z \end{pmatrix}$.

- 1. Montrer que s est une symétrie vectorielle.
- 2. Déterminer ses espaces propres $E_1 = \text{Ker}(s id_E)$ et $E_2 = \text{Ker}(s + id_E)$.
- 3. Montrer que E_1 et E_2 sont supplémentaires orthogonaux dans \mathbb{R}^3 .
- 4. Déterminer $\mathcal{B} = (u_1, u_2, u_3)$ une base orthonormée de $\mathbb{R}^3 = E_1 \oplus E_2$ compatible à cette décomposition. Ecrire la matrice de passage P avec la base canonique \mathcal{B}_0 .
- 5. On note $S = \mathcal{M}at_{\mathcal{B}_0}(s)$ et $D = \mathcal{M}at_{\mathcal{B}}(s)$. Préciser le lien entre les matrices S, D et P. Que peut-on remarquer sur leurs transposées S^T, D^T et P^T ?