Fonctions d'une variable réelles

Révision de la semaine 4

Fonctions de classe C^n pour $n \in \mathbb{N} \cup \{\infty\}$

Stabilité des classes par les opérations.

Formule de Leibniz.

Caractère \mathbb{C}^n de la bijection réciproque sous condition sur la dérivée première.

Fonctions usuelles de classe C^{∞}

Les polynômes et les fractions rationnelles.

Les fonctions exp, ln, \log_b , $x \mapsto b^x$ et $x \mapsto x^{\alpha}$.

Les fonctions ch, sh et th.

Les fonctions cos, sin, tan et leurs réciproques.

Liste de Questions de cours :

- a) Démontrer que la composée de deux injections (resp. surjections, bijections) est une injection (resp. surjection, bijection).
- b) Montrer que la fonction sinus est dérivable sur \mathbb{R} en admettant $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.
- c) Enoncer puis démontrer la formule de la dérivée d'un produit.
- d) En tant que bijection réciproque, démontrer que la fonction Arcsin est de classe C^{∞} sur]-1,1[et calculer sa dérivée première.
- e) Enoncer puis démontrer la Formule de Leibniz.
- f) Enoncer puis démontrer le caractère C^n d'une bijection réciproque.

Exercices d'Application du Cours

- 1. Déterminer les domaines de dérivation et les dérivées premières des fonctions :
 - (a) $f(x) = Arcsin \left(\sqrt{x+1} 1\right)$
 - (b) $g(x) = \ln(\cosh(2x)) + \ln(\sinh(2x))$
 - (c) $h(x) = x^{\ln x}$.
- 2. Déterminer les domaines de dérivation et les dérivées n-ième des fonctions :
 - (a) $f(x) = (x-1)^2(x^2+3x-1)$
 - (b) $g(x) = \frac{x^2 1}{x^2 + 3x + 2}$
 - (c) $h(x) = x^2 \cos(3x)$.
- 3. On recherche à calculer th $^{-1}(y)$.
 - (a) Montrer que th réalise une bijection de \mathbb{R} vers]-1,1[.
 - (b) Montrer que sa bijection réciproque est dérivable sur]-1,1[et que $(th^{-1})'(y)=\frac{1}{1-y^2}$.
 - (c) En déduire que th $^{-1}(y) = \frac{1}{2} \ln \left(\frac{1+y}{1-y} \right)$.

Devoir libre

- 1. On considère $f: x \mapsto \operatorname{Arcsin}\left(\frac{2x}{1+x^2}\right)$.
 - (a) Montrer que f est bien définie et continue sur \mathbb{R} .
 - (b) Sur quel domaine la fonction f est-elle dérivable? Calculer f'.
 - (c) En déduire que $f(x) = 2\operatorname{Arctan}(x)$ pour $x \in]-1,1[$.
 - (d) Déterminer une expression de f sur $]1, +\infty[$ et sur $]-\infty, -1[$.
 - (e) Montrer que f n'est pas dérivable en 1 et -1.
 - (f) Tracer la courbe représentative de f (échelle : unité= 3cm). On précisera les tangentes obtenues en $0, \pm \sqrt{3} \approx \pm 1.73$ et $\pm 1/\sqrt{3} \approx \pm 0.57$.