La fonction cube sur \mathbb{C}

On considère l'application $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^3$.

- 1. Montrer que f est surjective mais pas injective.
- 2. Montrer que $f(\mathbb{R}) = \mathbb{R}$ et $f(\mathbb{U}) = \mathbb{U}$.
- 3. Montrer que $f^*(\mathbb{R}) = \mathbb{R} \cup j\mathbb{R} \cup j^2\mathbb{R}$.
- 4. On note $A = \{z \in \mathbb{C}^* \text{ tel que } \operatorname{Arg}(z) \in [0, \frac{2\pi}{3}[+2\pi\mathbb{Z}]\}$. Montrer que la restriction $g = f|_{\mathcal{A}}^{\mathbb{C}^*} : A \to \mathbb{C}^*$ est une bijection.
- 1. On a f(0) = 0 et pour $z = \rho e^{i\theta} \in \mathbb{C}^*$. On peut proposer $f(\sqrt[3]{\rho}e^{i\theta/3}) = z$. Donc tous les complexes sont dans l'image et f est surjective.

Par ailleurs, f(1) = f(j) avec $1 \neq j$ donc f n'est pas injective.

2. On peut montrer $f(\mathbb{R}) = \mathbb{R}$ grâce à un argument d'analyse.

La restriction à \mathbb{R} est $x\mapsto x^3$ est strictement croissante et continue. Donc l'image de l'intervalle $]-\infty, +\infty[$ est déterminée par les limites $\lim_{x\to +\infty} x^3 = +\infty$ et $\lim_{x\to -\infty} x^3 = -\infty$. Ainsi $f(]-\infty, +\infty[) =]-\infty, +\infty[$.

On montre $f(\mathbb{U}) = \mathbb{U}$ par double inclusion.

D'une part $f(e^{i\theta}) = e^{3i\theta} \in \mathbb{U}$. Donc $f(\mathbb{U}) \subset \mathbb{U}$.

D'autre part $e^{i\varphi} = f(e^{i\varphi/3}) \in f(\mathbb{U})$. Donc $\mathbb{U} \subset f(\mathbb{U})$.

- 3. Soit $z \in \mathbb{C}$. On résout $z \in f^*(\mathbb{R})$ ssi $f(z) \in \mathbb{R}$ ssi $z^3 \in \mathbb{R}$ ssi $(z^3 = 0 \text{ ou } \operatorname{Arg}(z^3) \equiv 0[\pi])$ ssi $z = 0 \text{ ou } \operatorname{Arg}(z) \equiv 0[\pi/3]$
 - ssi $z \in \{0\} \cup \mathbb{R}_+^* \cup j\mathbb{R}_+^* \cup j^2\mathbb{R}_+^* \cup (-1)\mathbb{R}_+^* \cup (-j)\mathbb{R}_+^* \cup (-j^2)\mathbb{R}_+^*$ ssi $z \in \left(\{0\} \cup \mathbb{R}_+^* \cup (-1)\mathbb{R}_+^*\right) \cup \left(\{0\} \cup j\mathbb{R}_+^* \cup (-j)\mathbb{R}_+^*\right) \cup \left(\{0\} \cup j^2\mathbb{R}_+^* \cup (-j^2)\mathbb{R}_+^*\right)$ ssi $z \in \mathbb{R} \cup j\mathbb{R} \cup j^2\mathbb{R}$.
- 4. On peut introduire la réciproque $g: \left\{ \begin{array}{c} \mathbb{C}^* \to A, \\ \rho e^{i\theta} \mapsto \sqrt[3]{\rho} e^{i\theta/3} \end{array} \right.$ avec $\rho > 0$ et $\theta \in [0, 2\pi[$. L'application g est bien définie et on vérifie que $g \circ f = id_A$ et $f \circ g = id_{C^*}$.

N.Provost LMB-PCSI1