DS 2 - Corrigé

a. Le discriminant de l'équation $\Delta = 16^2 - 16(11 - 12i) = 16(5 + 12i)$.

On recherche une racine de 5 + 12i sous forme algébrique $\delta = a + ib$. Il vérifie le

système
$$\begin{cases} a^2 - b^2 &= 5\\ 2ab &= 12 \text{. Donc } \delta = 3 + 2i \text{ convient.} \\ a^2 + b^2 = 13 \end{cases}$$

Puis les solutions sont $\frac{16+4(3+2i)}{8} = \frac{7}{2} + i$ et $\frac{16-4(3+2i)}{8} = \frac{1}{2} - i$.

b. On écrit la constante sous la forme exponentielle puis on résout $z^n = \rho e^{i\theta}$

On a
$$\left(\frac{i\sqrt{3}+1}{\sqrt{3}+i}\right)^{2025} = \left(\frac{2e^{i\pi/3}}{2e^{i\pi/6}}\right)^{2025}$$

= $(e^{i\pi/6})^{2025} = e^{9i\pi/6} = e^{3i\pi/2} \text{ car } 2025 = 12 \times 168 + 9.$

On résout ainsi $z^5 = e^{3i\pi/2}$ ssi $\exists \omega \in \mathbb{U}_5, z = \omega e^{3i\pi/10}$.

Donc $S_{\mathbb{C}} = \left\{ \exp\left((4k+3) \frac{i\pi}{10} \right) \text{ pour } k \in \llbracket 0, 4 \rrbracket \right\}.$

c. L'équation s'écrit également $\left(\frac{1+iz}{1-iz}\right)^3 = \frac{1+i\tan\alpha}{1-i\tan\alpha}$ pour $z \neq -i$ qui n'est pas solution.

On écrit $\frac{1+i\tan\alpha}{1-i\tan\alpha} = \frac{\rho e^{i\alpha}}{\rho e^{-i\alpha}} = e^{2i\alpha}$ avec $\rho = |1+i\tan\alpha| = |1-i\tan\alpha|$. Ainsi $\left(\frac{1+iz}{1-iz}\right)^3 = e^{2i\alpha}$ ssi $\exists \omega \in \mathbb{U}_3, \frac{1+iz}{1-iz} = \omega e^{2i\alpha/3}$ ssi $\exists k \in [0,2], \frac{1+iz}{1-iz} = e^{2ik\pi/3}e^{2i\alpha/3} = e^{i\theta_k}$ avec $\theta_k = \frac{2(k\pi+\alpha)}{3}$ ssi $\exists k \in [0,2], z = \frac{e^{i\theta_k}-1}{i(e^{i\theta_k}+1)} = \tan(\theta_k/2)$ avec l'arc moitié.

Ainsi
$$\left(\frac{1+iz}{1-iz}\right)^3 = e^{2i\alpha}$$
 ssi $\exists \omega \in \mathbb{U}_3, \frac{1+iz}{1-iz} = \omega e^{2i\alpha/3}$

Donc $\mathcal{S}_{\mathbb{C}} = \{ \tan(\alpha/3), \tan(\alpha/3 + \pi/3), \tan(\alpha/3 + 2\pi/3) \}.$

d. On peut reconnaître la formule du binôme de Newton $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ avec $a=z^2$ et b=2. L'équation s'écrit $(z^2+2)^3+1=0$ ssi $(z^2+2)^3=-1=(-1)^3$ ssi $\exists \omega \in \mathbb{U}_3, z^2 + 2 = -\omega$ ssi $\exists \omega \in \{1, j, j^2\}, z^2 = -2 - \omega$.

On distingue les cas $\omega = 1$, $z^2 = -3 = (\sqrt{3}i)^2$. Donc $z \in {\sqrt{3}i, -\sqrt{3}i}$

Si $\omega = j = \frac{-1}{2} + i\frac{\sqrt{3}}{2}, z^2 = \frac{-3}{2} - i\frac{\sqrt{3}}{2} = \sqrt{3}e^{7i\pi/6}$. Donc $z \in \{3^{1/4}e^{7i\pi/12}, 3^{1/4}e^{-5i\pi/12}\}$.

Si $\omega = j^2 = \bar{j}$, on trouve l'équation conjugué donc $z \in \{3^{1/4}e^{-7i\pi/12}, 3^{1/4}e^{+5i\pi/12}\}$ sont les solutions conjuguées.

Donc $\mathcal{S}_{\mathbb{C}} = \{\sqrt{3}i, -\sqrt{3}i, 3^{1/4}e^{7i\pi/12}, 3^{1/4}e^{-7i\pi/12}, 3^{1/4}e^{5i\pi/12}, 3^{1/4}e^{-5i\pi/12}\}.$

Exercice 2 : On recherche à appliquer le Théorème de la bijection continue

Lorsque la fonction f est bijective, on résout $f(x) = y \Leftrightarrow x = f^{-1}(y)$

a. $f: \mathbb{R} \to [-1, 1[, x \mapsto \frac{x^2 - 1}{x^2 + 1}]]$

On peut observer que f est une fonction paire f(-x) = f(x) en particulier f(-1) =f(1) donc f n'est pas injective.

La fonction est dérivable sur \mathbb{R} et $f'(x) = \frac{4x}{(x^2+1)}$. Donc f est strictement croissante sur \mathbb{R}_+ donc $f([0,+\infty[)=[f(0),\lim_{+\infty}f[=[-1,1[$. Par symétrie, f est strictement décroissante sur \mathbb{R}_{-} et $f(\mathbb{R}_{-}) = f(\mathbb{R}_{+}) = [-1, 1[$. Ainsi f est surjective.

b. $g: \mathbb{R}_+ \to \mathbb{R}_+, x \mapsto \ln(x^2 + x + 1)$.

Pour $x \ge 0$, on a $x^2 + x + 1 \ge 1 > 0$. Donc g est dérivable sur \mathbb{R}_+ et $g'(x) = \frac{2x+1}{x^2 + x + 1} > 0$. Puis $g(0) = \ln(1) = 0$ et $\lim_{\infty} g = +\infty$. Donc g réalise une bijection continue de \mathbb{R}_+ vers $g(\mathbb{R}_+) = \mathbb{R}_+$.

On résout $g(x) = y \operatorname{ssi} x^2 + x + 1 = e^y \operatorname{ssi} x^2 + x + (1 - e^y) = 0.$

On a $\Delta = 1 - 4(1 - e^y) = 4e^y - 3 \ge 4e^0 - 3 = 1 > 0$. Donc $x \in \{\frac{-1 + \sqrt{4e^y - 3}}{2}, \frac{-1 - \sqrt{4e^y - 3}}{2}\}$. Or $\frac{-1 - \sqrt{4e^y - 3}}{2} < 0$. Ainsi $x = \frac{-1 + \sqrt{4e^y - 3}}{2} > 0$ est l'unique solution.

En conclusion $g^{-1}(y) = \frac{-1+\sqrt{4e^y-3}}{2}$.

c. $h: \mathbb{R}_+ \to \mathbb{R}_+, x \mapsto \sqrt{\operatorname{ch}(x) - 1}$.

Pour $x \ge 0$, on a $\operatorname{ch}(x) - 1 > 0$ ssi $\operatorname{ch}(x) \ne 1$ ssi $x \ne 0$. Donc h est dérivable sur \mathbb{R}_+^* et $h'(x) = \frac{\sinh(x)}{2\sqrt{\cosh(x)-1}} > 0$.

Ainsi h est strictement croissante sur \mathbb{R}_+ . On a h(0) = 0 et $\lim_{\infty} h = +\infty$. Donc h réalise une bijection continue de \mathbb{R}_+ vers $h(\mathbb{R}_+) = \mathbb{R}_+$.

On résout h(x) = y ssi $ch(x) - 1 = y^2$

ssi
$$\frac{e^x + e^{-x}}{2} = y^2 + 1$$

ssi
$$(e^x)^2 - 2(y^2 + 1)e^x + 1 = 0$$

Le discriminant est $\Delta = 4(y^2 + 1)^2 - 4 = 4(y^2)(y^2 + 2) \ge 0$.

Donc $e^x \in \{(y^2+1) + y\sqrt{y^2+2}, (y^2+1) - y\sqrt{y^2+2}\}$. Or $x \ge 0$ donc $e^x \ge 1$.

Ainsi $e^x = (y^2 + 1) + y\sqrt{y^2 + 2}$ car $0 < (y^2 + 1) - y\sqrt{y^2 + 2} < 1$ pour y > 0.

En conclusion $h^{-1}(y) = \ln \left(y^2 + 1 + y\sqrt{y^2 + 2} \right)$

a. On rappel $\mathbb{U}_n = \{z \in \mathbb{C} \text{ tel que } z^n = 1\} = \{\exp\left(\frac{2ik\pi}{n}\right) \text{ pour } k \in [0, n-1]\}.$ Exercice 3:

Ainsi $\sum_{z\in\mathbb{U}_n} z = \sum_{k=0}^{n-1} \exp(2ik\pi/n)$ d'après la paramétrisation $= \sum_{k=0}^{n-1} \exp(2i\pi/n)^k = \sum_{k=0}^{n-1} \omega^k$ d'après la formule de Moivre $= \omega^0 \frac{1-\omega^n}{1-\omega} = 0$ car $\omega^n = 1$

- b. On a $\prod_{z \in \mathbb{U}_n} z = \prod_{k=0}^{n-1} \omega^k$ = $\omega^{\sum_{k=0}^{n-1} k} = \omega^{n(n-1)/2}$ = $\exp\left(\frac{2i\pi}{n} \frac{n(n-1)}{2}\right)$ d'après la formule de Moivre.

 $=\exp(i\pi(n-1))=(-1)^{n-1}$

- c. On reconnaît la formule du binôme de Newton : $\sum_{k=0}^{n-1} \binom{n}{k} \omega^k = (\omega+1)^n \omega^n$ = $(e^{2i\pi/n} + e^{i0})^n - 1 = (2\cos(\pi/n)e^{i\pi/n})^n - 1$ avec l'arc moitié $= 2^n \cos^n(\pi/n)e^{i\pi} - 1 = -2^n \cos^n(\pi/n) - 1 \in \mathbb{R}.$
- d. On peut faire apparaître une somme triangulaire en écrivant $(k+1) = \sum_{l=0}^{k} 1$.

Ainsi $\sum_{k=0}^{n-1} (k+1)\omega^k = \sum_{k=0}^{n-1} \sum_{l=0}^k \omega^k$ $= \sum_{l=0}^{n-1} \sum_{k=l}^{n-1} \omega^k$ $= \sum_{l=0}^{n-1} \omega^l \frac{1-\omega^{n-l}}{1-\omega} = \frac{1}{1-\omega} \sum_{l=0}^{n-1} (\omega^l - \omega^n)$ $\frac{1}{1-\omega} \left(\sum_{l=0}^{n-1} \omega^l - \sum_{l=0}^{n-1} 1\right) = \frac{1}{1-\omega} (0-n)$ $= \frac{n}{\omega-1} = \frac{n}{2\cos(\pi/n)e^{i\pi/n}}.$ Donc le module est $\frac{n}{2\cos(\pi/n)} > 0$ et l'argument est $-\frac{\pi}{n}$ modulo 2π .

Problème I: Partie A:

- 1. On a $\sqrt{17} 1 < \sqrt{25} 1 = 4 < 8$ et $34 2\sqrt{17} < 34 + 2\sqrt{17}$ donc par croissance de la fonction racine. $\sqrt{34-2\sqrt{17}} < \sqrt{34+2\sqrt{17}}$. Ceci permet d'avoir A est strictement positif car: $(\sqrt{17}-1)\sqrt{34-2\sqrt{17}} < 8\sqrt{34+2\sqrt{17}}$.
- 2. On calcule:

$$\begin{split} A^2 &= (1 - \sqrt{17})^2 (34 - 2\sqrt{17}) + 16(1 - \sqrt{17})\sqrt{(34 - 2\sqrt{17})(34 + 2\sqrt{17})} + 64(34 + 2\sqrt{17}) \\ &= (18 - 2\sqrt{17})(34 - 2\sqrt{17}) + 16(1 - \sqrt{17})\sqrt{34^2 - 4 * 17} + 2^7(17 + \sqrt{17}) \\ &= 2^2 (170 - 26\sqrt{17}) + 2^7(\sqrt{17} - 17) + 2^7(17 + \sqrt{17}) \\ &= 680 + 152\sqrt{17} = 4(170 + 38\sqrt{17}). \end{split}$$

Donc $A = 2\sqrt{170 + 38\sqrt{17}}$.

N.Provost PCSI1 2025-2026

- 3. \implies On suppose que a+b=S et ab=P alors a et b sont racines du polynôme : $(X-a)(X-b)=X^2-(a+b)X+ab=X^2-SX+P$.
 - Æ Réciproquement, on suppose que a et b sont racines de $X^2 SX + P$ alors l'une vaut : $\frac{S+\sqrt{\Delta}}{2}$ et l'autre $\frac{S-\sqrt{\Delta}}{2}$ avec $\Delta = S^2 4P \ge 0$ car il existe des racines réelles. On a alors $a+b=\frac{S+\sqrt{\Delta}}{2}+\frac{S-\sqrt{\Delta}}{2}=S$ et $ab=\frac{S+\sqrt{\Delta}}{2}\frac{S-\sqrt{\Delta}}{2}=\frac{S^2-\Delta}{4}=P$.
- 4. On recherche les solutions de l'équation $X^2 \frac{1-\sqrt{17}}{4}X \frac{1}{4}$. Le discriminant est $\Delta = \frac{1}{16}(34 - 2\sqrt{17}) > 0$. Donc les solutions sont : $\frac{1}{8}(1 - \sqrt{17} + \sqrt{34 - 2\sqrt{17}})$ et $\frac{1}{8}(1 - \sqrt{17} - \sqrt{34 - 2\sqrt{17}})$.
- Donc les solutions sont : $\frac{1}{8}(1 \sqrt{17} + \sqrt{34} 2\sqrt{17})$ et $\frac{1}{8}(1 \sqrt{17} \sqrt{34} 2\sqrt{17})$ 5. On a $\sin(h/2) = 0 \Leftrightarrow \frac{h}{2} \equiv 0[\pi] \Leftrightarrow h \equiv 0[2\pi]$.
- Dans ce cas, $C_n(a,h) = (n+1)\cos(a)$ et $S_n(a,h) = (n+1)\sin(a)$. 6. On rappel $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$ lorsque $q \neq 1$.

$$C_n(a,h) + iS_n(a,h) = \sum_{k=0}^n e^{i(a+kh)} = e^{ia} \sum_{k=0}^n \left(e^{ih}\right)^k = e^{ia} \frac{1 - e^{ih(n+1)}}{1 - e^{ih}}$$
$$= e^{ia} \frac{e^{-ih/2} - e^{ih(n+1/2)}}{e^{-ih/2} - e^{ih/2}} = e^{ia} \frac{e^{ih(n+1/2)} - e^{-ih/2}}{2i\sin(h/2)}.$$

Puis la partie réelle est $C_n(a,h) = \frac{\sin(a+h(n+1/2))-\sin(a-h/2)}{2\sin(h/2)}$. La partie imaginaire est $S_n(a,h) = \frac{\cos(a-h/2)-\cos(a+h(n+1/2))}{2\sin(h/2)}$.

Partie B:

- 1. On a $\cos[(17-k)\theta] = \cos[\pi k\theta] = -\cos(k\theta)$ et $\sin[(17-k)\theta] = \sin[\pi - k\theta] = \sin(k\theta)$.
- 2. On a $\cos 3\theta > \cos 6\theta = -\cos 11\theta$ donc $\cos 3\theta + \cos 11\theta > 0$. Puis $\cos 5\theta$ et $\cos 7\theta$ sont positifs donc : $x_1 > 0$.
- 3. On a $x_1 + x_2 = \sum_{k=0}^{7} \cos(\theta + 2k\theta) = C_7(\theta, 2\theta) = \frac{\sin(\theta + 2\theta(7+1/2)) \sin(0)}{2\sin(2\theta/2)} = \frac{1}{2}$.
- 4. On a $2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b)$. On obtient en développant : $2x_1x_2 = 4\cos(2\theta) + 4\cos(4\theta) + 4\cos(6\theta) + 4\cos(8\theta) + 4\cos(10\theta) + 4\cos(12\theta) + 4\cos(14\theta) + 4\cos(16\theta)$.
- 5. Par symétrie du B.1), on obtient $x_1x_2 = -2(x_1 + x_2) = -1$.
- 6. Alors x_1 et x_2 sont racines de $X^2 X/2 1$ comme système somme-produit et $x_1 > 0$. Donc $x_1 = \frac{1+\sqrt{17}}{4}$ et $x_2 = \frac{1-\sqrt{17}}{4}$.
- 7. On a $2y_1y_2 = \cos 10\theta + \cos 4\theta + \cos 14\theta + \cos 8\theta + \cos 12\theta + \cos 2\theta + \cos 16\theta + \cos 6\theta$ = $-(x_1 + x_2) = -1/2$. On obtient de même $y_3y_4 = -1/4$.
- 8. On sait que y_1 et y_2 ont pour somme $x_1 = \frac{1+\sqrt{17}}{4}$ et pour produit $\frac{-1}{4}$. Donc ils sont solutions du polynôme $X^2 \frac{1+\sqrt{17}}{2}X \frac{1}{4}$. De plus $y_1 > y_2$ d'où : $y_1 = \frac{1}{8}(1+\sqrt{17}+\sqrt{34+2\sqrt{17}})$ et $y_2 = \frac{1}{8}(1+\sqrt{17}-\sqrt{34+2\sqrt{17}})$.

 $y_1 = \frac{1}{8}(1 + \sqrt{17} + \sqrt{34} + 2\sqrt{17})$ et $y_2 = \frac{1}{8}(1 + \sqrt{17} - \sqrt{34} + 2\sqrt{17})$. Puis de même : $y_3 = \frac{1}{8}(1 - \sqrt{17} + \sqrt{34} - 2\sqrt{17})$ et $y_4 = \frac{1}{8}(1 - \sqrt{17} - \sqrt{34} - 2\sqrt{17})$.

9. On peut écrire $y_1 = 2\cos(4\theta)\cos(\theta) = -2\cos(13\theta)\cos(\theta)$. Ceci permet de trouver la valeur du produit de $\cos(\theta)$ et $\cos(13\theta)$. La somme est donnée par y_3 . La résolution du polynôme $X^2 - \frac{1}{8}(1 - \sqrt{17} + \sqrt{34 - 2\sqrt{17}})X - \frac{1}{16}(1 + \sqrt{17} + \sqrt{34 + 2\sqrt{17}})$ et la remarque $\cos(\theta) > \cos(13\theta)$ donne : $\Delta = \frac{1}{16}\left(17 + 3\sqrt{17} + \sqrt{170 + 38\sqrt{17}}\right)$ car on retrouve la valeur de A. Puis :

$$\cos(\pi/17) = \frac{1}{16} \left(1 - \sqrt{17} + \sqrt{34 - 2\sqrt{17}} + 2\sqrt{17 + 3\sqrt{17} + \sqrt{170 + 38\sqrt{17}}} \right).$$

N.Provost PCSI1 2025-2026