Devoir Surveillé de Mathématiques n° 2 le samedi 11 Octobre 2025 - durée 3h

Exercice 1 : Résoudre les équations suivantes sur $\mathbb C$:

a.
$$4z^2 - 16z + 11 - 12i = 0$$
.

a.
$$4z^2 - 16z + 11 - 12i = 0$$
.
b. $z^5 = \left(\frac{i\sqrt{3}+1}{\sqrt{3}+i}\right)^{2025}$.

c.
$$(1+iz)^3(1-i\tan\alpha)=(1-iz)^3(1+i\tan\alpha)$$
 avec $\alpha\in\mathbb{R}$ fixé.

d.
$$z^6 + 6z^4 + 12z^2 + 9 = 0$$
.

Exercice 2: Etduier les variations des applications suivantes. Sont-elles injectives ou surjectives? Lorsque l'application est bijective, on précisera la bijection réciproque.

a.
$$f: \mathbb{R} \to [-1, 1[, x \mapsto \frac{x^2 - 1}{x^2 + 1}]]$$

b.
$$g: \mathbb{R}_+ \to \mathbb{R}_+, x \mapsto \ln(x^2 + x + 1)$$
.

c.
$$h: \mathbb{R}_+ \to \mathbb{R}_+, x \mapsto \sqrt{\operatorname{ch}(x) - 1}$$
.

Exercice 3: Soit $n \in \mathbb{N}^*$. On note $\omega = \exp(\frac{2i\pi}{n})$.

- a. Rappeler la définition de \mathbb{U}_n . En déduire que $\sum_{z\in\mathbb{U}_n}z=\sum_{k=0}^{n-1}\omega^k=0$.
- b. Montrer que $\prod_{z \in \mathbb{U}_n} z = (-1)^{n-1}$.
- c. Calculer $\sum_{k=0}^{n-1} {n \choose k} \omega^k$. Montrer que c'est un réel.
- d. Calculer $\sum_{k=0}^{n-1} (k+1)\omega^k$. Préciser son module et son argument.

Problème I : L'objet du problème est d'exprimer $\cos \frac{\pi}{17}$ à l'aide de radicaux.

Partie A: On pose
$$A = (1 - \sqrt{17})\sqrt{34 - 2\sqrt{17}} + 8\sqrt{34 + 2\sqrt{17}}$$
.

- 1. Déterminer le signe de A.
- 2. Calculer A^2 sous la forme $p + q\sqrt{17}$ avec p et q des entiers. En déduire une expression plus simple de A.
- 3. Soient $a, b, S, P \in \mathbb{R}$. Montrer l'équivalence :

$$(a+b=S \text{ et } ab=P) \Leftrightarrow (a \text{ et } b \text{ sont les solutions de } X^2-SX+P=0).$$

- 4. Trouver les réels qui ont pour somme $\frac{1-\sqrt{17}}{4}$ et pour produit $-\frac{1}{4}$.
- 5. Soient $a,h\in\mathbb{R}$ et $n\in\mathbb{N}.$ On définit :

$$C_n(a,h) = \sum_{k=0}^n \cos(a+kh)$$
 et $S_n(a,h) = \sum_{k=0}^n \sin(a+kh)$.

Que valent ces sommes si on suppose $\sin \frac{h}{2} = 0$?

6. On suppose désormais $\sin \frac{h}{2} \neq 0$. Rappeler la formule $\sum_{k=0}^{n} q^k = \dots$ pour $q \in \mathbb{C} - \{1\}$ et déterminer des expressions simples de $C_n(a,h)$ et $S_n(a,h)$.

Partie B: Dans la suite, on pose $\theta = \frac{\pi}{17}$ et :

$$x_1 = \cos(3\theta) + \cos(5\theta) + \cos(7\theta) + \cos(11\theta)$$
 et $x_2 = \cos(\theta) + \cos(9\theta) + \cos(13\theta) + \cos(15\theta)$

- 1. Montrer que pour $k \in [0, 17]$, $\cos[k\theta] = -\cos[(17-k)\theta]$ et $\sin[k\theta] = \sin[(17-k)\theta]$.
- 2. A l'aide des variations de la fonction cos, montrer que $x_1 > 0$.
- 3. Montrer que $x_1 + x_2 = \frac{1}{2}$ à l'aide de la question A.6.
- 4. Rappeler la formule cos(a) cos(b) = ... et simplifier le produit x_1x_2 .
- 5. En déduire que $x_1x_2 = -1$.
- 6. Déterminer des expressions de x_1 et x_2 à l'aide de radicaux.
- 7. On pose désormais :

$$y_1 = \cos(3\theta) + \cos(5\theta), y_2 = \cos(7\theta) + \cos(11\theta),$$

 $y_3 = \cos(\theta) + \cos(13\theta) \text{ et } y_4 = \cos(9\theta) + \cos(15\theta).$

Calculer les produits y_1y_2 et y_3y_4 .

- 8. En déduire les expressions à l'aide de radicaux des quatre nombres y_1, y_2, y_3 et y_4 .
- 9. Exprimer y_1 en tant qu'un produit de cosinus. En déduire une expression de $\cos(\theta)$.

N.Provost PCSI1 2025-2026