Fonctions d'une variable réelles

Révision de la semaine 5

Fonctions à valeurs dans $\mathbb C$

Equivalence de la dérivabilité et classe avec les fonctions $\operatorname{Re}(f)$ et $\operatorname{Im}(f)$. Stabilité des classes C^n d'une somme, d'une combinaison linéaire et d'un produit. Dérivabilité et classe de $g \circ f$ avec $f: I \to \mathbb{R}$ et $g: J \to \mathbb{C}$ tel que $f(I) \subset J$. Dérivabilité et classe de $\exp(\varphi)$ avec $\varphi: I \to \mathbb{C}$.

Calcul de primitives et Equations différentielles

Les fonctions sont à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Primitives de référence

$$\begin{array}{l} x\mapsto \exp(\lambda x) \text{ pour } \lambda\in\mathbb{C}.\\ x\mapsto x^{\alpha} \text{ pour } \alpha\in\mathbb{C}\setminus\{-1\}, \qquad x\mapsto \frac{1}{x-a} \text{ pour } a\in\mathbb{R}.\\ x\mapsto \cos(x), \quad x\mapsto \sin(x), \quad x\mapsto \tan(x),\\ x\mapsto \frac{1}{\tan(x)}, \quad x\mapsto \frac{1}{\cos^2 x}, \quad x\mapsto \frac{1}{\sin^2 x}.\\ x\mapsto \frac{1}{\cos(x)}, \quad x\mapsto \frac{1}{\sin(x)}. \end{array}$$

Primitives des fractions rationnelles

Primitive de
$$x\mapsto \frac{1}{(x-\alpha)^2+\beta^2}$$
 et $x\mapsto \frac{x-\alpha}{(x-\alpha)^2+\beta^2}$

Existence de primitives

Intégrale de Riemann sur un segment [a, b] sans construction à ce stade.

Relation de Chasles et linéarité de l'intégrale.

Théorème fondamental, existence d'une primitive d'une fonction continue sur un intervalle.

Techniques de calcul intégral

Intégration par parties.

Changement de variables.

Liste de Questions de cours :

- a) En tant que bijection réciproque, démontrer que la fonction Arcsin est de classe C^{∞} sur]-1,1[et calculer sa dérivée première.
- b) Enoncer puis démontrer la Formule de Leibniz.
- c) Enoncer puis démontrer le caractère C^n d'une bijection réciproque.
- **d)** Montrer que th réalise une bijection de \mathbb{R} vers]-1,1[. En calculant sa dérivée, montrer que th $^{-1}(y)=\frac{1}{2}\ln\left(\frac{1+y}{1-y}\right)$.
- e) Enoncer et démontrer la formule d'intégration par parties puis calculer $\int_0^x \operatorname{Arctan}(t) dt$.
- f) Enoncer et démontrer la formule de changement de variables puis calculer $\int_0^x \frac{1}{1+e^t} dt$.

Exercices d'Application du Cours

1. Déterminer des primitives des fonctions suivantes :

(a)
$$f(x) = \frac{x^2 + 3x - 1}{x^2 + x - 2}$$

(b)
$$g(x) = e^{-2x} \cos(x)$$

(c)
$$h(x) = \frac{x^2 + 2x}{\sqrt{x+1}}$$

2. Calculer à l'aide d'une intégration par partie :

(a)
$$\int_0^{\pi/2} x \cos(x) \, \mathrm{d}x$$

(b)
$$\int_0^1 (x^2 + x + 1)e^{-x} dx$$

(c)
$$\int_1^2 \frac{\ln x}{x} dx$$

 $3.\ {\rm Calculer}$ à l'aide d'un changement de variable :

(a)
$$\int_1^2 \frac{\ln x}{x} dx$$
 avec $u = \ln x$

(b)
$$\int_{0}^{1} e^{x} \sqrt{e^{x} + 3} dx$$
 avec $u = e^{x}$

(b)
$$\int_0^1 e^x \sqrt{e^x + 3} \, dx$$
 avec $u = e^x$
(c) $\int_0^3 \frac{x^2 + 2x}{\sqrt{x+1}} \, dx$ avec $u = \sqrt{x+1}$

Devoir libre

- 1. On recherche à calculer $I = \int_0^{\pi/4} \ln(1 + \tan x) \, \mathrm{d}x$.
 - (a) Montrer que, pour $x \in [0, \pi/4], \tan(\pi/4 x) = \frac{1 \tan(x)}{1 + \tan(x)}$.
 - (b) Avec le changement de variable $u = \pi/4 x$, montrer que $I = \int_0^{\pi/4} \ln(2) du I$. En déduire la valeur de I.
 - (c) A l'aide d'une intégration par partie, montrer que $I = \int_0^{\pi/4} \frac{x \, dx}{\cos x (\cos x + \sin x)}$.
- 2. Soit $n \in \mathbb{N}$. On définit $W_n = \int_0^{\pi/2} \sin^n(t) dt$.
 - (a) Calculer W_0, W_1 et W_2 .
 - (b) Montrer que la suite $(W_n)_{n\geq 0}$ est décroissante et minorée.
 - (c) A l'aide d'une intégration par parties, montrer que $(n+2)W_{n+2} = (n+1)W_n$.
 - (d) Montrer que $W_{2n} = \frac{(2n)!\pi}{2^{2n+1}(n!)^2}$.
 - (e) Montrer que la suite $u_n = (n+1)W_{n+1}W_n$ est constante.
 - (f) En déduire une expression de W_{2n+1} .