
Calculer les bornes supérieures et inférieurs, si elles existent, de

A =

{
3p

2pq + 5
pour p, q ∈ N∗

}
.

non vide : La partie A est non vide car 3
7 ∈ A avec p = q = 1.

majorée : On a 3p
2pq+5 ≤ 3p

2p+5 = 3
2 − 15/2

2p+5 < 3
2 . Donc M = 3

2 est un majorant.

majorant approché : De plus an = 3n
2n+5 → 3

2 et an ∈ A avec p = n et q = 1.

Donc, par caractérisation séquentielle, supA = 3
2 .

minorée : On a 3p
2pq+5 ≥ 3

2q+5 > 0. Donc m = 0 est un minorant.

minorant approché : On a an = 3
2n+5 → 0 et an ∈ A avec p = 1 et q = n.

Donc, par caractérisation séquentielle, inf A = 0 .

Etudier les suites définies par


un+1 = 2un + vn

vn+1 = 2un + 3vn + 1

u0 = v0 = 0

à l’aide de wn = un + vn.

Pour n ∈ N, on a wn+1 = (2un + vn) + (2un + 3vn + 1) = 4(un + vn) + 1 = 4wn + 1.
Donc (wn) est une suite arithmético-géométrique de raison 4.
Son point fixe vérifie l = 4l + 1 ssi l = −1/3.

Donc wn = 4n(w0 − l) + l =
1

3
4n − 1

3
.

On pose également an = 2un−vn. On a an+1 = 2un−vn−1 = an−1 est une suite arithmétique
de raison −1. Donc an = −n = −n.

On en déduit un = 1
3 (wn + an) =

1

9
4n − 1

9
− n

3

et vn = 1
3 (2wn − an) =

2

9
4n − 2

9
+

n

3
.

Ainsi un ∼+∞
1
94

n → +∞ et vn ∼+∞
2
94

n → +∞.

On considère les suites définies par u0 = 1, v0 = 2, un+1 = 2un+vn
3 et vn+1 = un+2vn

3 .
Montrer que le suites sont adjacentes. Préciser leur limite.

Différence des deux suites : On a vn+1 − un+1 = vn−un

3 est géométrique de raison 1
3 .

Donc vn − un = (v0−u0)
3n = 1

3n → 0.
(un) croissante : On a un+1 − un = vn−un

3 = 1
3n+1 > 0.

(vn) décroissante : On a vn+1 − vn = un−vn
3 = − 1

3n+1 < 0.
Donc les suites sont adjacentes et elles tendent vers une même limite l ∈ [1, 2].
Calcul de la limite : On peut remarquer que un+1+vn+1 = un+vn. Donc la suite est constante

égale à u0 + v0 = 3. Ainsi en passant à la limite on trouve 2l = 3 puis l = 3
2 .

Etudier la suite (un) définie par u0 = −1
2 et un+1 =

u2
n+1
2 .

On introduit f(x) = x2+1
2 croissante sur R+ et décroissante sur R−.
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Point fixe : On a f(l) = l ssi l2 + 1 = 2l ssi l2 − 2l + 1 = (l − 1)2 = 0 ssi l = 1.
Intervalle stable : On a u1 = f(u0) =

3
8 ∈ [0, 1[.

Puis f([0, 1[) = [f(0), f(1)[⊂ [0, 1[ car f est croissante sur R+.
Donc pour tout n ≥ 1, un ∈ [0, 1[.

Monotonie : On sait que f est croissante sur [0, 1[ donc la suite (un)n≥1 est monotone.
Puis u2 = f(u1) =

73
128 > 48

128 = 3
8 = u1 > u0.

Donc (un)n≥0 est croissante.

Conclusion : D’après le théorème de la limite monotone, on en déduit que un → 1 l’unique
point fixe.

On considère f : x 7→ E(x) + (x− E(x))2 avec E(x) = ⌊x⌋.
Etudier la continuité puis la dérivabilité de f .

Régularité globale : La fonction E est C∞ sur R \ Z. Par opération, on obtient que f est
également C∞ sur R \ Z.

Continuité locale : Soit n ∈ Z. On a f(n) = n.
Puis f(x) = n+ (x− n)2 →x→n+ n+ (n− n)2 = n au voisinage à droite.
Et f(x) = (n− 1) + (x− (n− 1))2 →x→n+ (n− 1) + (n− (n− 1))2 = n au voisinage à gauche.
Donc f est continue en n.

Dérivabilité locale : Soit n ∈ Z.
Pour x ∈]n, n+ 1[, on a f(x)−f(n)

x−n = n+(x−n)2−n
x−n = x+ n →x→n 2n.

Pour x ∈]n− 1, n[, on a f(x)−f(n)
x−n = n−1+(x−n+1)2−n

x−n

= −1+(x−n)2+2(x−n)+1
x−n = x+ n+ 2 →x→n 2n+ 2.

Donc f est dérivable à droite et à gauche en n avec f ′(n+) = 2n ̸= 2n+ 2 = f ′(n−).
Ainsi f n’est pas dérivable en n.

Déterminer les applications f : R → R telles que |f(x)− f(y)| = |x− y|.

On note A = f(0). Pour tout x ∈ R, |f(x) − A| = |x|. Donc f(x) = s(x)x + A avec s(x) ∈
{−1, 1}.

Pour x ̸= y, on obtient |s(x)x− s(y)y| = |x− y| donc en élevant au carré : x2−2s(x)s(y)xy+
y2 = x2 − 2xy + y2. Ainsi s(x)s(y)xy = xy i.e. xy = 0 ou s(x)s(y) = 1.

Dans le premier cas, on calcul simplement le signe de zéro s(0) qui peut être arbitraire. Dans
le second cas, on obtient pour tout x, y non nuls, s(x) = s(y) i.e. s est constante.

Ainsi il y a deux types de solutions f(x) = x+A pourA ∈ R lorsque s = 1 ou f(x) = −x+A

pour A ∈ R lorsque s = −1.
Ce sont les fonctions affines de pente 1 ou −1.

Soit f : [0, 1] → [0, 1] continue et strictement décroissante.
Montrer que pour tout n ≥ 1, il existe un unique xn tel que f(xn) = xn

n.
Etudier la suite (xn)n≥1.

Soit n ≥ 1. Notons gn(x) = f(x)− xn. On sait que gn est strictement décroissante sur [0, 1].
De plus gn(0) = f(0) ≥ 0 et gn(1) = f(1)− 1 ≤ 1− 1 = 0 car 0 ≤ f(x) ≤ 1 pour tout x ∈ [0, 1].
Ainsi gn réalise une bijection de [0, 1] vers [f(1)−1, f(0)] qui contient 0. Donc il existe un unique
xn ∈ [0, 1] tel que gn(xn) = 0 ⇔ f(xn) = xn

n.
On a gn+1(xn) = f(xn) − xn+1

n = xn
n − xn+1

n = xn
n(1 − xn) ≥ 0. Or gn+1(xn+1) = 0 par

définition. Donc gn+1(xn) ≥ gn+1(xn+1) avec gn+1 décroissante. Donc xn ≤ xn+1. Ainsi la suite
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(xn)n≥1 est croissante et majorée par 1. Donc x→l ∈ [x1, 1] d’après le théorème de la limite
monotone.

Si f(l) > 0 alors xn = n
√
f(xn) = exp

(
1
n ln(f(xn))

)
→ exp(0) = 1 = l. Si f(l) = 0 alors

0 ≤ f(1) ≤ f(l) = 0 par décroissante. Puis f(l) = f(1) donc l = 1 par stricte monotonie. Dans

tous les cas xn → 1 .

Soit f de classe C1 sur R+ tel que f(0) = f ′(0) = f(a) = 0.
Montrer qu’il existe une tangente en c > 0 à la courbe de f qui passe par l’origine.

L’équation de la tangente en un point c recherché est y = f(c)+f ′(c)(x−c). Si cette tangente
passe par l’origine (x, y) = (0, 0) alors 0 = f(c)− f ′(c)c.

Posons g(x) = f(x)−f(0)
x , on sait que g est de classe C1 sur ]0, a] et se prolonge en 0 car

g(x) = τ0(f)(x) → f ′(0).
Donc g est continue sur [0, a] et dérivable sur ]0, a[. De plus g(0) = f ′(0) = 0 et g(a) =

f(a)−f(0)
a = 0. Ainsi d’après le théorème de Rolle, il existe c ∈]0, a[ tel que g′(c) = 0.

Par calcul, g′(x) = f(x)−xf ′(x)
x2 donc g′(c) = f(c)−cf ′(c)

c2 = 0 i.e. 0 = f(c)− f ′(c)c qui est bien
la condition recherchée.

Montrer que pour tout entier n ∈ N, (1 + x)n ≤ 2n−1(1 + xn) pour x > 0.

On peut utiliser la convexité de f : t 7→ tn sur R+ entre 1 et x avec un facteur λ = 1
2 .

Ainsi f
(
1+x
2

)
≤ f(1)+f(x)

2 s’écrit (1+x)n

2n ≤ 1n+xn

2 .

Puis en multipliant par 2n > 0, on obtient (1 + x)n ≤ 2n−1(1 + xn) .

Soit f convexe sur [a, b] tel que f(a) < 0 < f(b).
Montrer qu’il existe un unique c tel que f(c) = 0.

Existence : On sait que f est convexe donc en particulier f est continue sur [a, b].
On a f(a) < 0 < f(b) donc d’après le TVI, il existe c ∈ [a, b] tel que f(c) = 0.

Unicité : On suppose par l’absurde que f(c1) = f(c2) = 0 avec a < c1 < c2 < b.
On a τc1(f)(a) < τc1(f)(c2) = 0 d’après l’inégalité des trois pentes.

Or τc1(f)(a) =
f(c1)−f(a)

c1−a = −f(a)
c1−a > 0 car f(a) < 0.

Ce qui est absurde. Donc c est unique.
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