
DS no 5 - Corrigé

Problème I : Méthode 1 : Forme de la matrice

1. La matrice T est triangulaire inférieure donc Tn également et les coefficients diago-

naux sont les puissances. Ainsi Tn =

(
1n 0 0
an 2n 0
bn cn 1n

)
avec an, bn, cn ∈ R.

Puis TnT =

(
1 0 0

an+2n 2n+1 0
bn+cn+1 2cn+1 1

)
et TTn =

(
1 0 0

2an+1 2n+1 0
1+an+bn cn+2n 1

)
.

Donc on obtient


an+1 = an + 2n = 2an + 1

bn+1 = an + bn + 1 = cn + bn + 1

cn+1 = 2cn + 1 = cn + 2n
.

Remarque : On obtient des expressions différentes en effectuant le produit par la gauche
ou par la droite. Le mieux est donc de faire les deux qui nous donnent la récurrence
la plus riche.

2. On obtient plusieurs méthodes en fonction du résultat de la question précédente :

Avec les deux produits, on a : an +2n = 2an +1 et 2cn +1 = cn +2n. Puis an = cn =
2n − 1 dans les deux cas.

Avec un seul des produits :

Gauche : L’expression an+1 = 2an+1 est une suite artihmético-géométrique de point

fixe −1 et de premier terme 0. Donc an = 2n(0− (−1)) + (−1) = 2n − 1.

Droite : L’expression an+1 = an + 2n et a0 = 0 permet d’écrire :
an = an − a0 =

∑n−1
k=0 ak+1 − ak =

∑n−1
k=0 2

k = 2n−1
2−1 = 2n − 1.

Les rôles de (an)n≥0 et (cn)n≥0 étant symétrique, on trouve également cn = 2n − 1.

3. On a b0 = 0 et bn = bn − b0 =
∑n−1

k=0(bk+1 − bk) par télescopage .

Donc bn =
∑n−1

k=0(ak + 1) =
∑n−1

k=0 2
k = 2n − 1.

4. On a ainsi trouver Tn =

 1 0 0
2n − 1 2n 0
2n − 1 2n − 1 1


Méthode 2 : Formule du binôme

5. On pose A = T − I3 =

0 0 0
1 1 0
1 1 0

 afin que T = I3 +A.

6. On calcul A2 =

0 0 0
1 1 0
1 1 0

 = A. Donc A est idempotente et ainsi ∀n ≥ 1, An = A.

7. On applique la formule du binôme de Newton avec I3 et A qui commutent.

On a Tn = (I3 +A)n =
∑n

k=0

(
n
k

)
In−k
3 Ak = I3 +

∑n
k=1

(
n
k

)
A = I3 + (2n − 1)A.

Ainsi on obtient Tn =

1 0 0
0 1 0
0 0 1

+

 0 0 0
2n − 1 2n − 1 0
2n − 1 2n − 1 0

 =

 1 0 0
2n − 1 2n 0
2n − 1 2n − 1 1

.

Méthode 3 : Polynôme annulateur

8. On a T 2 =
(

1 0 0
3 4 0
3 3 1

)
= 3T − 2I3.

9. On effectue la division euclidienne de Xn par X2 − 3X + 2 sous la forme :
Xn = (X2 − 3X + 2)Qn(X) +Rn(X) avec Rn(X) = anX + bn.

En X = A, on obtient An = 0 +Rn(A) = anA+ bnI3.
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10. On a X2 − 3X + 2 = (X − 1)(X − 2).
En X = 1, on a 1n = an + bn.
En X = 2, on a 2n = 2an + bn.

On résout le système

(
1 1 1
2 1 2n

)
et on trouve an = 2n − 1 et bn = 2− 2n.

11. On a Tn = (2n − 1)T + (2− 2n)I3 =

 1 0 0
2n − 1 2n 0
2n − 1 2n − 1 1

.

Méthode 4 : Diagonalisation

12. On applique l’algorithme du pivot de Gauss-Jordan à la matrice augmenté (P |I3) ∼L

(I3|P−1). On trouve P−1 =
(

0 −1 1
1 1 −1
1 1 0

)
13. On calcul D = P−1TP =

(
1 0 0
0 1 0
0 0 2

)
est une matrice diagonale.

14. On commence par remarquer que PDP−1 = PP−1TPP−1 = T .

Init. n = 0 On a T 0 = I3 et PD0P−1 = PP−1 = I3.

Hérédité Soit n ∈ N tel que Tn = PDnP−1.

Donc Tn+1 = TnT = PDnP−1PDP−1 = PDnDP−1 = PDn+1P−1.

15. On a Tn = PDnP−1 =
(

1 1 0
−1 −1 1
0 −1 1

)(
1 0 0
0 1 0
0 0 2n

)(
0 −1 1
1 1 −1
1 1 0

)
=

(
1 1 0
−1 −1 1
0 −1 1

)(
0 −1 1
1 1 −1
2n 2n 0

)
=

( 1 0 0
2n−1 2n 0
2n−1 2n−1 1

)
.

Problème II : 1. Notons h(x) = ax+ b. Pour x, y ∈ R.
On a |h(x)− h(y)| = |(ax+ b)− (ay + b)| = |a||x− y|. Donc h est |a|-lipschitzienne.

2. Si f est M -lipschitzienne alors ∀x, y ∈ I, |f(x)− f(y)| ≤M |x− y| .
Etudions la continuité en x0 ∈ I. Soit x ∈ I au voisinage de x0.
On a |f(x)− f(x0)| ≤M |x− x0| →x→x0

0.
Donc par encadrement |f(x)− f(x0)| →x→x0

0. Ainsi f(x)→x→x0
f(x0).

La fonction est continue en x0 quelconque. Donc continue sur I.

3. Les fonctions Arctan et sin sont de classe C∞ sur R. De plus pour x ∈ R, |Arctan ′(x)| =
1

1+x2 ≤ 1 et | sin′(x)| = | cos(x)| ≤ 1.

Donc d’après l’inégalité des accroissement finies , ce sont des fonctions 1-lipschitzienne.

4. Soit x, y ∈ I. On a |f(x)− f(y)| ≤ 1
n |x− y| →n→+∞ 0.

Donc f(x) = f(y) pour tout x, y ∈ I i.e. f est une fonction constante.

5. Pour x, y ∈ I, on a f(x), f(y) ∈ J .
Donc |g(f(x))− g(f(y))| ≤Mg|f(x)− f(y)| ≤MgMf |x− y|.
Ainsi g ◦ f est, par définition, MgMf -lipschitzienne.

6. On combine les questions 1., 3. et 5.
On a Arctan ◦ h : x 7→ Arctan (ax+ b) est 1× |a| = |a|-lipschitzienne.
Et h ◦ sin : x 7→ a sin(x) + b est |a| × 1 = |a|-lipschitzienne.

7. On montre le résultat par récurrence sur n ∈ N∗.
Initialisation : pour n = 1, on a bien f est Mf -lipschitzienne.
Hérédité : Soit n ∈ N∗ tel que fn est Mn

f -lipschitzienne.

On a fn+1 = fn ◦ f avec f(I) ⊂ I. D’après la question 5., avec g = fn, on en
déduite que la composée est Mn

f .Mf -lipschitzienne. Ainsi on a bien fn+1 est Mn+1
f -

lipschitzienne.

8. De la relation f2 = f ◦f = f . On en déduit que pour tout n ≥ 1, fn = f (l’application
f est idempotente pour la composition)
Donc, d’après la question 7., f est (1/2)n-lipschitzienne pour tout n ≥ 1.
En adaptant, la question 4., en remplaçant la suite 1

n par la suite 1
2n , on montre que
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f est constante. La synthèse est triviale : Les fonctions constantes vérifient f ◦ f = f
et sont (au moins) (1/2)-contractante car 0-lipschitzienne d’après 1.

Problème III : 1. (a) Par le calcul, on obtient A =

−2 0 −2
1 0 1
1 0 1

 puis A2 = −A.

Ainsi (−A)2 = (−A) donc (−A) est idempotente .

On en déduit que (−A)n = −A pour tout n ≥ 1. Puis An = (−1)n+1A.

(b) On montre par récurrence sur n ∈ N l’existence de αn ∈ R.
Initialisation n = 0 la valeur α0 = 0 convient à M0 = I3 + α0A.

n = 1 par définition de A, on a M = I3 + 4A donc α1 = 4 convient.

Hérédité Soit n ∈ N tel que Mn = I3 + αnA.
On a Mn+1 = MnM = (I3 + αnA)(I3 + 4A) par hypothèse de récurrence
= I3 + (αn + 4)A+ 4αnA

2 = I3 + (αn + 4− 4αn)A car A2 = −A.

Donc αn+1 = −3αn + 4 convient.

(c) La suite (αn)n≥0 est une suite arithmético-géométrique de raison −3 et de pre-

mier terme 0. Son point fixe l ∈ R vérifie l = −3l + 4 donc l = 1.

Donc αn − 1 = (−3)n(α0 − 1). Puis αn = 1− (−3)n.

Ainsi Mn = I3 + (1− (−3)n)A =

−1 + 2(−3)n 0 −2 + 2(−3)n
1− (−3)n 1 1− (−3)n
1− (−3)n 0 2− (−3)n

.

2. (a) L’équationM = 4B−3I3 se résout en B = 1
4 (M+3I3) = A+I3 =

−1 0 −2
1 1 1
1 0 2

.

(b) On a B2 = B. Donc B est un idempotent . On en déduit Bn = B pour n ≥ 1.

(c) Plusieurs méthodes possibles : adapter la question 1., utiliser la formule du binôme
de Newton, à l’aide d’un polynôme annulateur.

Binôme de Newton. On a Mn = (4B − 3I3)
n =

∑n
k=0

(
n
k

)
(4B)k(−3I3)n−k =

(−3)nI3 +
∑n

k=1

(
n
k

)
4k(−3)n−kB = (−3)nI3 + [(4− 3)n − (−3)n]B.

Polynôme Annulateur. On a B2 = B donc 1
16 (M+3I3)

2 = 1
4 (M+3I3). Puis 0 =

(M+3I3)
2−4(M+3I3) = (M+3I3)(M−I3). Donc χ(X) = (X+3)(X−1) est un

polynôme annulateur. On trouve Mn = anM + bnI3 avec

{
1n = an + bn

(−3)n = −3an + bn
.

3. (a) On a MX = λX ssi (M − λI3)X = 0.
On résout le système homogène associé à M − λI3.

M − λI3 =

−7− λ 0 −8
4 1− λ 4
4 0 5− λ


∼L

1− λ 1− λ 1− λ
4 1− λ 4
4 0 5− λ

 avec L1 ← L1 + L2 + L3

∼L

1 1 1
4 1− λ 4
4 0 5− λ

 avec L1 ← L1/(1− λ) si λ ̸= 1.

∼L

1 1 1
0 −3− λ 0
0 −4 1− λ

 avec L2 ← L2 − 4L1 et L3 ← L3 − 4L1.

Si λ /∈ {1,−3}, on obtient, après permutation de lignes et colonnes, un système
échelonné de rang 3. Donc l’unique solution est X = 0.

N.Provost PCSI1 2025-2026



Si λ = 1, le système est de rang 1, il admet des solutions non nulles (2 paramètres)

Si λ = −3, le système est de rang 2, il admet des solutions non nulles (1 paramètre)

(b) On a M
(

a
b
1

)
=

( −7a−8
4a+b+4
4a+5

)
et −3

(
a
b
1

)
=

(−3a
−3b
−3

)
.

On résout le système de 2 inconnues et trois équations, on obtient a = −2 et b = 1.

(c) De même, on obtient des systèmes à résoudre. Puis c = 0 et d = −1.

(d) On a P =

−2 0 −1
1 1 0
1 0 1

. On montre que (P |I3) ∼L (I3|P−1) à l’aide du pivot

de Gauss-Jordan. On trouve P−1 =

−1 0 −1
1 1 1
1 0 2

.

(e) Le calcul des coefficients montre que D = P−1MP =

−3 0 0
0 1 0
0 0 1

.

(f) On montre par récurrence que pour tout n ∈ N,Mn = PDnP−1.

Puis Dn =

(−3)n 0 0
0 1 0
0 0 1

 car la matrice est diagonale.

Ceci montrer à nouveau Mn =

−1 + 2(−3)n 0 −2 + 2(−3)n
1− (−3)n 1 1− (−3)n
1− (−3)n 0 2− (−3)n

.

4. (a) Notons Xn =
(

un
vn
wn

)
. Les relations de récurrence s’écrivent Xn+1 = MXn.

On montre par récurrence queXn = MnX0. On en déduit
(

un
vn
wn

)
=

(
(−1+2(−3)n)u0+(−2+2(−3)n)w0

(1−(−3)n)u0+v0+(1−(−3)n)w0

(1−(−3)n)u0+(2−(−3)n)w0

)
.

(b) On a un = (−1 + 2(−3)n)u0 + (−2 + 2(−3)n)w0 = 2(−3)n(u0 +w0)− (u0 + 2w0)
avec (−3)n diverge sans limite. Donc (un) converge ssi u0 + w0 = 0.

De même vn = (1−(−3)n)u0+v0+(1−(−3)n)w0 = (u0+v0+w0)−(−3)n(u0+w0)
converge ssi u0 + w0 = 0.

Et wn = (1− (−3)n)u0 + (2− (−3)n)w0 = (u0 + 2w0)− (−3)n(u0 +w0) converge
ssi u0 + w0 = 0.

Donc les trois suites convergent ssi u0 + w0 = 0. Dans ce cas, les suites sont
constantes égales à leurs premiers termes.

Problème IV : A. Propriété de continuité de f

1. On peut utiliser l’inégalité des accroissements finies à la fonction exp sur l’intervalle

[0, x] :

On obtient inf [0,x] exp
′ ≤ ex−e0

x−0 ≤ sup[0,x] exp
′.

C’est à dire 1 ≤ f(x) ≤ ex car inf [0,x] exp
′ = e0 = 1 et sup[0,x] exp

′ = ex

2. La fonction f est de classe C∞ sur R∗ par opération.
Puis, pour x ̸= 0, f(x) = ex−1

x = τ0exp(x) →x→0 exp′(0) = 1 par définition de la
dérivabilité. Ainsi f se prolonge par continuité en 0 avec f(0) = 1.

3. La fonction exp est strictement convexe car exp′′ = exp > 0.
Donc ses taux d’accroissement sont strictement croissant.
En particulier f = τ0(exp) est strictement croissante sur R.
Remarque : L’étude du signe de la dérivée f ′(x) = (x−1)ex+1

x2 donne une méthode
valide mais plus calculatoire. Le numérateur est n(x) = (x− 1)ex + 1 puis sa dérivée
n′(x) = xex change de signe en 0. Ainsi n atteint un minimum en 0, et n(x) > n(0) = 0
pour x ̸= 0. Donc le numérateur et le dénominateur de f ′ sont strictement positifs et
f est strictement croissante sur R.
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4. La fonction f est strictement croissante et continue sur R. D’après le Théorème de la bijection continue ,

f : R → f(R) réalise une bijection. Le calcul de I = f(R) se fait via les limites en
±∞.
On a f(x) ∼x→+∞

ex

x → +∞ par croissance comparée.
Et f(x) ∼x→−∞

−1
x → 0+. Donc I =]0,+∞[.

B. Convexité de f

5. Pour x ̸= 0, f ′(x) = (x−1)ex+1
x2 puis f ′′(x) = (x2−2x+2)ex−2

x3 .
Donc g(x) = (x2 − 2x+ 2)ex − 2.

6. La fonction g est C∞ sur R et g′(x) = x2ex ≥ 0.
Donc g est croissante et change de signe en 0 car g(0) = 0.
Ainsi g est négative sur R− et positive sur R+.

7. On a f ′′(x) = g(x)
x3 avec x3 qui change de signe en 0 également.

Donc f ′′(x) > 0 pour x ̸= 0. Puis f est convexe sur R.

Remarque : La convexité (comme la monotonie) est une propriété globale : si f est
convexe sur R− {0} et continue sur R alors f est convexe sur R.
Comme lorsque f est strictement croissante sur R−{0} est continue alors f est stric-
tement croissante sur R.

8. La fonction f ′ est donc croissante sur R∗
+ et sur R∗

− mais on ne sait pas si elle est

définie en 0. Toutefois d’après le Théorème de la limite monotone , il existe des limites
à droite et à gauche en tous points. Ainsi f ′(0+) = lim0+ f ′ et f ′(0−) = lim0− f ′

existent et sont finie. En particulier la fonction est dérivable à droite et à gauche en 0.

C. Prolongement de la dérivabilité de f

9. Pour x ̸= 0, on a :xf ′(x) = (x−1)ex+1
x et (x− 1)f(x) + 1 = (x−1)(ex−1)+x

x = (x−1)ex+1
x .

Donc xf ′(x) = (x− 1)f(x) + 1.

10. Pour x ̸= 0, f(2x) = e2x−1
2x = (ex−1)(ex+1)

2x = f(x) e
x+1
2 .

Donc f(2x)− f(x) = f(x)
(
ex+1

2 − 1
)
= f(x)

2 (ex − 1) = f(x)
2 xf(x).

Ainsi f(2x)−f(x)
x = (f(x)2

2 .

11. On reconnâıt des expressions de taux d’accroissement dans la question 10. mais la
question 8. nous invite à calculer séparément limite à droite et à gauche.

On peut écrire f(2x)−f(x)
x = f(2x)−f(0)

x − f(x)−f(0)
x = 2τ0(f)(2x) − τ0(f)(x) →x→0+

2f ′(0+)− f ′(0+) = f ′(0+).

De même f(2x)−f(x)
x →x→0− f ′(0−).

Et d’autre part, f(2x)−f(x)
x = f(x)2

2 →x→0
1
2 par limite épointée (gauche/droite inutile).

Ainsi par unicité des limites, on obtient f ′(0+) = 1
2 = f ′(0−). Donc f est dérivable en

0 avec f ′(0) = 1
2 .

12. La question 9. permet d’écrire f ′(x) = (x−1)f(x)+1
x = f(x)− f(x)−1

x →x→0 1− 1
2 = 1

2 .
Donc f ′(x)→x→0 f ′(0) et f ′ est continue en 0. Donc f est de classe C1 sur R.
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