
TD 22 - Corrigé

Exo 1 : a) Pour x ∈ E et y = 0 ∈ E, on obtient :
N(x) = dist(x, 0) = dist(f(x), f(0)) = N(f(x)).

b) On peut utiliser une identité de polarisation −2⟨x|y⟩ = N2(x− y)−N2(x)−N2(y) =
N2(f(x)− f(y))−N2(f(x))−N2(f(y)) = −2⟨f(x), f(y)⟩.

c) Pour i, j ∈ J1, nK, on a ⟨f(ei), f(ej)⟩ = ⟨ei, ej⟩ = δi=j .
Donc la famille (f(e1), ..., f(en)) est aussi une base orthonormée de E.
Puis la décomposition est f(x) =

∑n
i=1⟨f(x)|f(ei)⟩f(ei) =

∑n
i=1⟨x|ei⟩f(ei) d’après

l’invariance.

d) La correspondance f(x) =
∑n

i=1⟨x|ei⟩f(ei) est bien celle d’une application linéaire de
E dans E.
Puis x ∈ Kerf ssi f(x) = 0 ssi N(f(x)) = 0 ssi N(x) = 0 ssi x = 0. Donc l’application
est injective.
Donc f est un automorphisme de E.

Exo 2 : Dans R3, on dispose du produit scalaire canonique. Pour u =
(

x
y
z

)
et v =

(
1
2
3

)
, l’inégalité

de Cauchy-Schwartz donne
|⟨u|v⟩| ≤ ||u||.||v|| avec égalité ssi u et v colinéaires

Donc |x+ 2y + 3z| ≤
√
14
√
x2 + y2 + z2 avec égalité ssi (y = 2x et z = 3x).

Exo 3 : a) On a ϕa : E → R, x 7→ ⟨x|a⟩ est une application linéaire surjective. En effet,
Imϕa ̸= {0} car ϕa(a) = ||a||2 > 0 donc Imϕa = R. Puis Ha = Kerϕa est un espace
vectoriel de dimension dimE − rgϕa = n− 1 d’après le théorème du rang.

b) Soit a ∈ H⊥. On a H⊥ = Vect a car dimH⊥ = n − (n − 1) = 1 = dimVect a et
Vect a ⊂ H⊥. Puis H = (Vect a)⊥ = Ha.

c) Soient a, b ∈ E−{0E} tels que Ha = Hb alors (Vect a)
⊥ = Ha = Hb = (Vect b)⊥ donc

Vect a = Vect b. Donc a et b sont colinéaires. La réciproque est triviale.

d) Soient a, b ∈ E −{0E} tels que ϕa = ϕb alors Ha = Kerϕa = Kerϕb = Hb donc a = λb
car ils sont colinéaires. Puis pour x ∈ E, ϕb(x) = φa(x) = ⟨a|x⟩ = λ⟨b|x⟩ = λϕb(x)
donc λ = 1. Ainsi ϕa = ϕb ⇒ a = b et la réciproque est triviale.

e) On a Φ : E → G, a 7→ ϕa est injective d’après la question précédente.
Pour a, b ∈ E et λ ∈ R, on a pour tout x ∈ E, ϕa+λb(x) = ⟨a+ λb|x⟩ = ⟨a|x⟩+ λ⟨b|x⟩
= ϕa(x) + λϕb(x). Donc ϕa+λb = ϕa + λϕb. Ainsi Φ est une application linéaire.
Enfin dimG = dimLR(E,R) = dimE.dimR = dimE.
Par caractérisation par la dimension Φ est un isomorphisme.

Exo 4 : (⇒) On suppose p orthogonal. Pour x ∈ E, on a p(x) ∈ Imp et x − p(x) ∈ Kerp donc
⟨p(x)|x− p(x)⟩ = 0. Puis ||x||2 = ||(x− p(x)) + p(x)||2 = ||x− p(x)||2 + ||p(x)||2 ≥ ||p(x)||2
(Pythagore)

(⇐) On suppose que pour tout x ∈ E, ||p(x)|| ≤ ||x||.
Soit u ∈ Kerp, v ∈ Imp et λ ∈ R. On pose x = λu + v ∈ E. Alors p(x) = p(λu + v) = v
et ||v||2 = ||p(x)||2 ≤ ||x||2 = λ2||u||2 + 2λ⟨u|v⟩+ ||v||2. Donc λ2||u||2 − 2λ⟨u|v⟩ ≥ 0 est un
polynôme du second degré toujours positif donc de discriminant négatif. Ainsi ⟨u|v⟩ = 0.
Donc Kerp⊥Imp et p est un projecteur orthogonal.

Exo 5 : a) On résout en 2x = −z + t et 2y = 3z + t avec z, t ∈ R Donc F = Vect (v1, v2) =

Vect

[(−1
3
2
0

)
,

(
1
1
0
2

)]
Puis on rend la base orthonormée via le procédé de Gramm-Schmidt b1 = 1√

14

(−1
3
2
0

)
⟨v2|b1⟩ = 2√

14
puis b̃2 = v2 − 2√

14
b1 = 1

7

(
8
−2
−2
2

)
et b2 = 1√

7

(
2
−1
−1
1

)
.
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b) On a F⊥ = Vect (v3, v4) = Vect

[(
1
1
−1
−1

)
,

(
1
−1
2
0

)]
. Le procédé donne b3 = 1

2

(
1
1
−1
−1

)
Puis ⟨b3|v4⟩ = 1−1−2

2 = −1 et b̃4 = v4 − (−1)b3 = 1
2

(
3
−1
3
−1

)
donc b4 = 1

2
√
5

(
3
−1
3
−1

)
.

c) On note B0 la base canonique et B = (b1, b2, b3, b4) la base orthonormée. On a

P =


−1/

√
14 2/

√
7 1/2 3/2

√
5

3/
√
14 −1/

√
7 1/2 −1/2

√
5

2/
√
14 −1/

√
7 −1/2 3/2

√
5

0 1/
√
7 −1/2 −1/2

√
5

 la matrice de passage orthogonale donc

P−1 =t P .

On a MatB0
(p) = P


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

P−1

=


−1/

√
14 2/

√
7 1/2 3/2

√
5

3/
√
14 −1/

√
7 1/2 −1/2

√
5

2/
√
14 −1/

√
7 −1/2 3/2

√
5

0 1/
√
7 −1/2 −1/2

√
5



−1/

√
14 3/

√
14 2/

√
14 0

2/
√
7 −1/

√
7 −1/

√
7 1/

√
7

0 0 0 0
0 0 0 0


= 1

14


9 −7 −6 4
−7 11 8 −2
−6 8 6 −2
4 −2 −2 2

.

d) Pour un vecteur u ∈ R4. On peut calculer p(u) avec la matrice précédente. Puis
d(u, F ) = ||u− p(u)||.
On a p(1, 0, 0, 1) = 1

14 (13,−11,−8, 6) donc d(u, F )2 = (1/14)2 + (11/14)2 + (8/14)2 +

(8/14)2 = 250/142 = (5
√
10/14)2.

De même, on peut obtenir le résultat pour les vecteurs suivants.

Exo 6 : On note F = {
( x+z

x−y
x+y+2z

)
pour x, y, z ∈ R} = Vect

[(
1
1
1

)
,
(

0
−1
1

)
,
(

1
0
2

)]
= Vect

[(
1
1
1

)
,
(

0
−1
1

)]
.

On dispose donc de (b1, b2) =
(

1√
3

(
1
1
1

)
, 1√

2

(
0
−1
1

))
une base orthonormée de F .

On note v =
(

1
−5
3

)
et on recherche d(v, F )2.

Le projeté est pF (v) = ⟨v|b1⟩b1 + ⟨v|b2⟩b2 = −1
3

(
1
1
1

)
+ 8

2

(
0
−1
1

)
=

(
−1/3
−13/3
11/3

)
.

Donc d(v, F )2 = ||v − pF (v)||2 = (−1/3− 1)2 + (−13/3 + 5)2 + (11/3− 3)2 = 16+4+1
9 = 7

3

Exo 7 : On se place dans E = R[X] munie du produit scalaire ⟨P |Q⟩ =
∫ +∞
0

e−tP (t)Q(t) dt.

L’expression est bien définie car P (t)Q(t) =t→+∞ o(et/2) donc e−tP (t)Q(t) =t→+∞ o(e−t/2)

avec
∫ +∞
0

e−t/2 dt qui converge.
On a ⟨P |Q⟩ = ⟨Q|P ⟩ et ⟨P1 + λP2|Q⟩ = ⟨P1|Q⟩+ λ⟨P2|Q⟩ .
Et λP |P ⟩ =

∫ +∞
0

e−tP (t)2 dt ≥ 0 avec égalité ssi ∀t ∈]0,+∞[, e−tP (t)2 = 0 ssi P = 0 car
le polynôme a un nombre infini de racines.

Puis on pose F = R1[X] et v = X2 ∈ E.
On a infa,b∈R

∫∞
0

e−t(t2 − at+ b)2 dt = dist2(F, v).

Puis F = Vect (1, X) avec ||1||2 =
∫ +∞
0

e−t12 dt = 1 donc b1 = 1 est unitaire.

⟨1, X⟩ =
∫ +∞
0

e−ttdt = [−e−tt]
+∞
0 −

∫ +∞
0

(−e−t)1 dt = 1 par IPP.

Donc b̃2 = X − ⟨1, X⟩1 = X − 1.

Et ||X−1||2 =
∫ +∞
0

e−t(t−1)2 dt =
[
e−t(−(t− 1)2 − 2(t− 1)− 2)

]+∞
0

= 1 d’où b2 = X−1.

Puis pF (v) = ⟨v|b1⟩b1 + ⟨v|b2⟩b2
=
∫ +∞
0

e−tt2 dt.1 +
∫ +∞
0

t2(t− 1) dt.(X − 1) = 2 + 4(X − 1) = 4X − 2.
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Ainsi dist2(v, F ) = ||v − pF (v)||2 =
∫ +∞
0

e−t(t2 − 4t+ 2)2 dt = ... = 4 (IPP).

Exo 8 : On pose b1 = 1√
2
v1 unitaire.

Puis b̃2 = v2 − ⟨v2|b1⟩b1 = v2 +
1
2v1 =

(
1/2
1/2
0
1

)
.

Et b2 = 1√
6

(
1
1
0
2

)
.

Puis pF (u) = ⟨u|b1⟩b1 + ⟨u|b2⟩b2.

Donc pF

(
x
y
z
t

)
= x−y

2

(
1
−1
0
0

)
+ x+y+2t

6

(
1
1
0
2

)
= 1

6

( 4x−2y+2t
−2x+4y+2t

0
2x+2y+4t

)
.

Donc la matrice du projecteur dans la base canonique est : 1
3


2 −1 0 1
−1 2 0 1
0 0 0 0
1 1 0 2

.

Exo 9 : a) L’intégrale sur le segment est bien définie.
La symétrie est trivial ⟨P |Q⟩ = ⟨Q|P ⟩.
On a ⟨P1 + λP2|Q⟩ = ⟨P1|Q⟩+ λ⟨P2|Q⟩ par linéarité de l’intégrale.

Puis ⟨P |P ⟩ =
∫ 1

−1
P (t)2 dt ≥ 0 avec égalité ssi ∀t ∈] − 1, 1[, P (t) = 0 ssi P = 0 car le

polynôme a une infinité de racines.

b) On part de (1, X,X2) la base canonique de R2[X]. On peut calculer tous les produits

scalaire avec ⟨Xa|Xb⟩ =
∫ 1

−1
ta+b dt =

{
2

a+b+1 si a+ b pair

0 si a+ b impair
.

Donc ||1||2 = 2
0+0+1 = 2. On pose b1 = 1√

2
.

Puis b̃2 = X − 1
2 ⟨X|1⟩1 = X car ⟨X|1⟩ = 0.

Et ||X||2 = 2
3 donc b2 =

√
3/2X.

Et b̃3 = X2 − 1
2 ⟨X

2|1⟩1− 3
2 ⟨X

2|X⟩X = X2 − 1
3 − 0.

Puis ||X2−1/3||2 = ||X2||2−2⟨X2|1/3⟩+ ||1/3||2 = 2
5 −2/3 2

3 +1/9.2 = 8
45 =

(
2
√
2

3
√
5

)2
.

Donc b3 = 3
√
5

2
√
2
(X2 − 1/3).

c) On a F = Vect (1, X2) = Vect (b1, b3). Donc pF (X
2 +X + 1) = ⟨X2 +X + 1|b1⟩b1 +

⟨X2 +X + 1|b3⟩b3
= (1/2).(2/3 + 0 + 2).1 + (45/8)⟨X2 +X + 1|X2 − 1/3⟩(X2 − 1/3)
= 4/3 + (45/8)[2/5− (1/3)(2/3) + 0 + 0 + 2/3− 2/3](X2 − 1/3) = X2 + 1.
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